

Assessment of temperature and salinity data obtained from in-situ platforms in the Mediterranean and Black Sea (historical data from 1990 to 2012)

Authors:

Giulio Notarstefano

Istituto Nazionale di Oceanografia e Geofisica Sperimentale (OGS) - Trieste, Italy

1. INTRODUCTION

MyOcean is the implementation project of the GMES Marine Core Service, aiming at deploying the first concerted and integrated pan-European capacity for Ocean Monitoring and Forecasting (http://www.myocean.eu.org). The project objective is to analyze, forecast and observe the oceans at global and regional (European Seas) scales in order to provide a monitoring service for marine environment and security.

The MyOcean Service aims to provide the best data available on the global ocean and regional seas related to temperature, salinity, currents, ice extent, sea level and biogeochemical properties. There are several fields of applications related to marine safety, marine resources, climate and seasonal forecasting as well as marine and coastal environment.

Within INS TAC (Technical Assembly Centres) WP15 historical data collection with the data providers in the regions will be organised and for the time period between 1990 and 2012. These data will be integrated into global and regional products for the identified WP18.4 users.

As part of Work Package (WP) 18, the scientific and technical validation of the historical data extracted from the in-situ TAC portal at a fix date is performed in order to assure an excellent quality of data. This scientific document describes the method developed at the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) in order to perform the quality assessment of the physical variables (temperature and salinity) in the Mediterranean and the Black Sea, collected with moorings, profiling floats, gliders, drifters and vessels. The procedure is similar to the one periodically applied in the Mediterranean Sea (Notarstefano et al., 2011) and follows the specifications contained in the Validation Plan (2010) and is also based on the validation procedure described in Von Schuckmann (2010).

2. METHODOLOGY

OGS is in charge of the DM validation of the historical physical variables (temperature and salinity) in the Mediterranean and Black Sea collected with in-situ platforms belonging to several European research institutes. In Figure 1 a schematic view of the entire process of the validation is shown. The NetCDF files stored in the Mediterranean and in the Black Sea servers at HCMR and IOBAS institutes respectively, are the input of the assessment procedure.

The first step is to split the NetCDF files in monthly files. This is done because the historical files are organized in the sense "one file per platform" and hence too large to be managed by the validation procedure. Ad-hoc *matlab* scripts have been created to split the files in time and space; the global attributes for the time and space limits are

modify accordingly. Hence, the number of NetCDF files generated from an original historical file corresponds to the number of months in which the platform recorded the data. Once the monthly files have been validated, they are grouped together (using other ad-hoc *matlab* scripts) to built again the original historical NetCDF file.

The method combines a comparison to a climatology and among the nearest platforms (cross-validation). After these checks the operator decides to change or not the quality flag associated to the data.

The target is to analyze the differences as a function of the spatial and temporal distances between the measurements: for this purpose, spatial and temporal windows have been set and the consistency check of the measurements is performed within these windows. The comparison is performed in a 2X2 degrees square, between -6° to 36° longitude East and 30° to 46° latitude North. The depth ranges and the vertical resolution adopted are presented in Table 1. The resolution decreases while increasing depth (like the thermohaline variability). The choice of these windows is a compromise: they have to be set large enough to contain a fair amount of reference data; on the contrary, the dimension has to take in account the correlation scales of temperature and salinity.

Depth ranges	Vertical resolution
0-100 m	10 m
100-800 m	25 m
800-2000 m	100 m
2000-4000 m	200 m

Table 1. Depth ranges (left) and the vertical resolution (right) adopted.

The comparison is therefore done in a portion (volume) of the water column and all the real time (RT) good data (hence data with the quality control (QC) flag equal to 1, 2, 5, 7, 8) pass through the validation procedure. In the framework of the WP 15, it was decided to perform the validation even if the QC for the pressure data is not done: the

DEPTH, DEPH and PRES values inferred by moorings and vessels and the PRES_ADJUSTED values with RT QC flags 0 are also accepted; moreover, the depth or pressure variables of surface platforms (except the surface moorings) with RT QC set to "fillvalue" are accepted and the default surface pressure value is in case set. The files without the depth or pressure variables are discarded.

The cross-validation technique allows to compare data provided by different platforms in a small time window (60 days \rightarrow month to be validated ±30 days). In this way a reliable consistency check is performed. The limit of this technique could be the scarcity of data and hence the condition to be applied is to have at least 2 different platforms and at least 5 data points.

The MEDAR-MEDATLAS climatology is used to perform the comparison with the in-situ data whenever the cross-validation technique cannot be adopted due to scarcity of data. In this case, a larger time window (years \rightarrow month to be validated minus several years) is adopted. The use of climatology has been introduced in order to check as many files as possible: the comparison with the Medar-Medatlas climatology to perform the validation is maybe not as reliable as the cross-validation method due to the high variability of the Mediterranean thermohaline properties and the scarcity of recent data. Hence, only major spikes and data inconsistencies are detected. But, this part of the validation procedure could be improved using the upcoming and more recent SeaDataNet climatology. The spatial and temporal distribution of the climatological profiles is presented in Figure 2 and 3.

Figure 2. Spatial distribution of the climatological profiles. Black arrows indicate areas with scarcity of data.

Figure 3. Temporal distribution of the climatological profiles.

The temporal data coverage exhibits two peaks in the years 1987 and 1995 with about 2000 CTD casts per year; the sampling is generally good within this period but before 1986 and after 1995 the number of CTD casts decreases drastically. The spatial coverage is quite good, but the southern Ionian, Tyrrhenian and Algerian seas have not been completely sampled. For this reason we prefer not to interpolate the data in these areas but to use the nearest data of the nearest 2X2 boxes to do the comparison.

The reference data and the data to be assessed are searched into a specific geographical area, time window and water volume. The mean value and standard deviation are computed in each water column portion. Anomalous values are those which are out of the predefined statistical thresholds listed in Table 2.

Depth interval	Range
Surface – 400 meters	5 x standard deviation
400 – 800 meters	4 x standard deviation
800 meters - bottom	3 x standard deviation

Table 2. Depth intervals (left) and respective accepted ranges (right).

The final output of the validation procedure is the production of delayed-mode (DM) validated files. Within the DM files, the QC flags are, in case, changed; the data mode is changed to "D"; the data mode attribute is changed to "M" or "D"; the global attribute data mode is changed to "M" or "D". The "comment" field of the global attribute is properly filled with the information about the validation and also the "date_update" field is updated. Finally, other ad-hoc matlab functions are used to built again the original historical NetCDF files: the DM monthly files are grouped together and then the files are sent to the HCMR and IOBAS server.

3. SOFTWARE

A briefly description of the software that was developed for the validation purpose is useful to understand the architecture of the validation procedure. The first step consists in downloading (automatically and, in case, manually) the data from the HCMR and IOBAS servers: a *perl* script was written in order to make a copy of the remote files (via FTP protocol) on the local server. Ad-hoc scripts (written in matlab) are then run to split the NetCDF platform-life based files into monthly NetCDF files. A matlab script named "Validation" is the main function that lists the monthly files to be processed, sets some parameters and starts the validation procedure that calls about 50 matlab functions. The NetCDF files are red and only the parts of files that are really needed for the validation are extracted and used: files (or part of them) with bad QC flags and in general not useful for the validation purpose are rejected. The files to be assessed follow the procedure described in this technical report and specific functions are called to perform the "cross-validation" or the comparison to the climatology. The NetCDF files on the local server are then overwritten including the information about the validation that was performed. Several ascii files are produced to list the validation results, the reasons for rejecting the files and the anomalies encountered. Others ad-hoc matlab scripts are run to built again the original historical NetCDF files. The last step consists of uploading the validated files on the HCMR and IOBAS servers: another perl script copies the NetCDF files from the OGS local server to the remote servers (via FTP protocol).

4. RESULTS OF THE VALIDATION - MEDITERRANEAN SEA

The total amount of files (or platforms that recorded temperature and salinity) in the Mediterranean Sea between 01-01-1990 and 31-12-2012 is 1202 (Figure 4): the largest number of files belongs to the vessel folder (742 files, 61.7% of the total number), then there are 249 drifter files (20.7%), 190 profiler-glider files (15.8%) and 21 mooring files (1.7%). The Mediterranean spatial coverage for the different platforms is reported in Figures from 5 to 8: the data are well spatially distributed with some exceptions in the

southern Ionian Sea and the shallower areas of the Northern Adriatic, the Aegean Sea and the Sicily Channel.

Figure 4. Percentage and number of files for different platforms used in the validation procedure in the Mediterranean Sea between 1 January 1990 and 31 December 2012.

Figure 5. Locations of drifter platforms in the Mediterranean Sea between 1 January 1990 and 31 December 2012.

Figure 6. Locations of mooring platforms in the Mediterranean Sea between 1 January 1990 and 31 December 2012.

Figure 7. Locations of profiler-glider platforms in the Mediterranean Sea between 1 January 1990 and 31 December 2012.

Figure 8. Locations of vessel platforms in the Mediterranean Sea between 1 January 1990 and 31 December 2012.

The quality control flags have been change according to the validation procedure results (Figure 9). In particular, the QC flag was changed for some temperature and salinity variables of 440 files (32% of the total number of the validated files): about 19% of the flag changing is due to temperature and about 13% to salinity.

67 files (about 5%) contain variables whose QC flags are always 9 (missing value) or 3 and 4 (probably bad and bad data); in Figure 10 the variables with this kind of flags are listed.

118 files (8.5%) are excluded by the validation procedure mainly for the following reasons (Figure 11): the QC flags of one or more variables are always equal to zero in the file and the files are not in the Mediterranean Sea. The largest part of files were excluded for the second reason (not in the Mediterranean Sea).

Figure 9. Percentage and number of files in which some quality control flags have been changed during the validation procedure.

Figure 10. Percentage and number of files that contain missing or bad data.

In summary, the result of the application of the DM assessment method is that some QC flags of 440 files have been changed for temperature and/or salinity data for the period January 1990 - December 2012 (see list of files in annex 1). 129 files whose data have the RT QC flags always equal to 0, 3, 4, 9 for one or more variables, have been discarded by the validation method and their data mode remain set to "R"; 56 files are out of the Mediterranean Sea (see list in annex 2). Data are duplicated in 10 files: see list of anomalous files in annex 3.

4. RESULTS OF THE VALIDATION - BLACK SEA

The total amount of files (or platforms that recorded temperature and salinity) in the Black Sea between 01-01-1990 and 31-12-2012 is 568 (Figure 12): the largest number of files belongs to the vessel folder (529 files, 93.1% of the total number), then there are 22 drifter files (3.9%), 15 profiler-glider files (2.6%) and 2 mooring files (0.4%). The Black Sea spatial coverage for the different platforms is reported in Figures from 13 to 16: the data are well spatially distributed especially for vessel and profiler-glider platform, with some exceptions in the Northwestern part of the basin.

Figure 12. Percentage and number of files for different platforms used in the validation procedure in the Mediterranean Sea between 1 January 1990 and 31 December 2012.

Figure 13. Locations of drifter platforms in the Black Sea between 1 January 1990 and 31 December 2012.

Figure 14. Locations of mooring platforms in the Black Sea between 1 January 1990 and 31 December 2012.

Figure 15. Locations of profiler-glider platforms in the Black Sea between 1 January 1990 and 31 December 2012.

Figure 16. Locations of vessel platforms in the Black Sea between 1 January 1990 and 31 December 2012.

The quality control flags have been change according to the validation procedure results (Figure 17). In particular, the QC flag was changed for some temperature and salinity variables of 317 files (54% of the total number of the validated files): about 27% of the flag changing is due to temperature and about the same quantity is due to salinity.

17 files (about 3%) contain variables whose QC flags are always 9 (missing value) or 3 and 4 (probably bad and bad data); in Figure 18 the variables with this kind of flags are listed.

1 file (0.2%) are excluded by the validation procedure (Figure 19) because the QC flags of the temperature variable are always equal to zero.

Figure 17. Percentage and number of files in which some quality control flags have been changed during the validation procedure.

Figure 18. Percentage and number of files that contain missing or bad data.

In summary, the result of the application of the DM assessment method is that some QC flags of 317 files have been changed for temperature and/or salinity data for the period January 1990 - December 2012 (see list of files in annex 4). 18 files whose data have the RT QC flags always equal to 0, 3, 4, 9 for one or more variables, have been discarded by the validation method and their data mode remain set to "R" (see list in annex 2). Data are duplicated in 2 files: see list of anomalous files in annex 3.

ANNEX: MEDITERRANEAN SEA

ANNEX 1

List of files whose some/all temperature and/or salinity QC flags have been changed

SALINITY QC FLAGS CHANGED FOR FILES:

GL_PR_PF_4900556 GL PR PF 6900278 GL_PR_PF_6900282 GL_PR_PF_6900292 GL_PR_PF_6900317 GL_PR_PF_6900371 GL_PR_PF_6900457 GL_PR_PF_6900664 GL_PR_PF_6900700 GL_PR_PF_6900712 GL PR CT 68951 GL_PR_CT_9013220_1996 GL_PR_CT_EGES_1991 GL_PR_CT_EGES_1994 GL_PR_CT_EHUU_1993 GL_PR_CT_EHUU_1999 GL_PR_CT_FGTO_1997 GL_PR_CT_FGTO_1998 GL_PR_CT_FGTO_2001 GL_PR_CT_FGTO_2003 GL_PR_CT_FGTO_2004 GL PR CT FGTO 2005 GL_PR_CT_FGTO_2010 GL_PR_CT_FGTO_2011 GL_PR_CT_FKJB_1994 GL_PR_CT_FKJB_1995 GL_PR_CT_FKJB_1996 GL_PR_CT_FKJB_1998 GL PR CT FKJB 2001 GL_PR_CT_FKJB_2002 GL_PR_CT_FKJB_2003 GL_PR_CT_FKJB_2004 GL_PR_CT_FNCM_1991 GL_PR_CT_FNCM_1998 GL_PR_CT_FNCM_2008 GL_PR_CT_FNFP_1997 GL_PR_CT_FZVN_1992 GL_PR_CT_FZVN_1995 GL_PR_CT_FZVN_1998

GL_PR_CT_FZVN_1999 GL_PR_CT_GACA_1991 GL_PR_CT_GLNE_1993 GL PR CT MJPX9 1993 GL_PR_CT_NIGD_1992 GL_PR_CT_NIGD_1993 GL_PR_CT_OCL0424_2006 GL_PR_CT_OCL0424_2008 GL PR CT SHIP 2003 GL_PR_CT_SXYY_2000 GL_PR_GL_18956 GL_PR_GL_18957 GL_PR_GL_61786A GL_PR_GL_61864 GL_PR_GL_68451 GL PR GL 68456 GL_PR_GL_68951 GL_PR_GL_68953 GL_PR_GL_68954 GL_PR_GL_EGO-Pheidippides GL_PR_ML_EXRE0103_2011 GL PR PF 6900453 GL_PR_PF_6900501 GL_PR_PF_6900503 GL_PR_PF_6900956 GL_PR_PF_6900993 GL PR XB FABB 2007 GL_PR_XB_FABB_2008 GL_PR_XB_FABB_2010 GL_PR_XB_FZVN_2000 GL_TS_TS_A8IG2_2008 GL_TS_TS_A8IG2_2009 GL_TS_TS_A8IG2_2010 GL_TS_TS_A8IG2_2011 GL_TS_TS_A8IG2_2012 GL_TS_TS_C6TN4_2010 GL_TS_TS_C6TN4_2011 GL_TS_TS_C6TN4_2012 GL_TS_TS_DBBH_1995 GL_TS_TS_DBKV_2009 GL_TS_TS_EDSV_2007 GL_TS_TS_EDSV_2009 GL_TS_TS_EDSV_2010 GL_TS_TS_EDSV_2011 GL TS TS EDSV 2012 GL_TS_TS_ELVX4_2000 GL_TS_TS_ELVZ5_1999 GL_TS_TS_ELVZ6_1999 GL_TS_TS_ELVZ6_2000 GL_TS_TS_ELVZ6_2002 GL TS TS ELVZ6 2005 GL_TS_TS_FABB_2006

GL_	_TS_	_TS_	_FABB_2008
GL_	_TS_	_TS_	_FABB_2010
GL_	_TS_	_TS_	_FABB_2011
GL_	_TS_	_TS_	_FGTO_2005
GL_	_TS_	_TS_	_FGTO_2012
GL_	_TS_	_TS_	_FKJB_2010
GL_	_TS_	_TS_	_FKJB_2011
GL_	_TS_	_TS_	_FKJB_2012
GL_	_TS_	_TS_	_FMCY_2007
GL_	TS	TS	
GL_	TS_	TS_	
GL_	TS_	TS_	
GL_	TS	TS	_FNAV_2010
GL_	TS	TS	
GL	TS	TS	FNCM 2005
GL_	TS	TS	
GL	TS	TS	
GL	TS	TS	
GL	TS	TS	FNCM 2011
GL	TS	TS	
GL	TS	TS	
GL	TS	TS	FNHO 2008
GL	TS	TS	FNHO 2010
GL	TS	TS	
GL	TS	TS	FZVN 2000
GL	TS	TS	FZVN 2003
GL	TS	TS	FZVN 2004
GL	TS	TS	FZVN 2006
GL	TS	TS	FZVN 2007
GL	TS	TS	FZVN 2008
GL	TS	TS	
GL	TS	TS	FZVN 2011
GL	TS	TS	KS059 2011
GL	TS	TS	 KS066 2011
GL	TS	TS	KS077 2011
GL	TS	TS	KS088 2010
GL	TS	TS	KS094 2011
GL	TS	TS	ZCDJ6 2010
GL	TS	TS	
MO	PR	BO	18230
MO	PR	BO	18339
MO	PR	BO	18340
MO	 PR	 BO	18425
MO	PR	BO	18440
MO	PR	 BO	18836
MO	PR	B0	18863
мо	PR	B0	BIODYPAR
MO	 	B0	BIOMED
MO	 	B0	ECOMALAGA
MO	 	 BO	ECOMURCIA
мо	PR	B0	FLIPERI
MO	 	B0	 Mesoescala

MO_PR_BO_Monitoring MO_PR_BO_NIBEWN_F MO_PR_BO_RHOFI MO PR CT AIRWIN MO_PR_CT_ALMOFRONTLEG MO_PR_CT_BIODYPAR MO_PR_CT_CYBOCYPRUSBASINOCEANOGRAPHY MO_PR_CT_DICAMUF MO PR CT DYNAMO MO_PR_CT_EUROMARGE MO_PR_CT_FE MO_PR_CT_FLIPERI MO_PR_CT_HYGAM MO_PR_CT_MARNAUT MO_PR_CT_MDASSEMBLAGE MO_PR_CT_METROMEDFEB MO_PR_CT_MODELFOS MO_PR_CT_MOOGLI MO_PR_CT_OMEGA MO_PR_CT_RHOFI MO_PR_CT_SHOM MO PR CT SUIVILION MO_PR_XB_MFSVOS MO_TS_MO_68422 MO_TS_MO_ATHOS MO_TS_MO_KALAM MO_TS_MO_LESVO MO_TS_MO_MYKON

TEMPERATURE QC FLAGS CHANGED FOR FILES:

GL_PR_PF_1900590 GL PR PF 1900606 GL_PR_PF_1900832 GL_PR_PF_1900947 GL_PR_PF_1900949 GL_PR_PF_4900556 GL_PR_PF_6900087 GL_PR_PF_6900229 GL_PR_PF_6900280 GL_PR_PF_6900281 GL PR PF 6900285 GL_PR_PF_6900286 GL_PR_PF_6900292 GL_PR_PF_6900302 GL_PR_PF_6900371 GL_PR_PF_6900455 GL_PR_PF_6900457 GL_PR_PF_6900699 GL_PR_PF_6900700 GL PR PF 6900816 GL_PR_PF_6900843

GL_PR_PF_6900848 GL_PR_BA_06SW_2009 GL_PR_BA_06SW_2010 GL PR BA 3FRY9 2001 GL_PR_BA_A8HE4_2009 GL_PR_BA_C6T2007_2000 GL_PR_BA_FQRQ_2000 GL_PR_BA_NDQV_1999 GL PR BA NSDT 1998 GL_PR_BA_NWEQ_1996 GL PR BA PGBB 1998 GL_PR_BA_SHIP_1997 GL_PR_BA_SHIP_1998 GL_PR_BA_SHIP_1999 GL_PR_BA_SHIP_2000 GL_PR_BA_SHIP_2001 GL_PR_BA_SHIP_2003 GL PR BA SHIP 2004 GL_PR_BA_SHIP_2005 GL_PR_BA_SHIP_2006 GL_PR_BA_SHIP_2008 GL PR BA ZCDJ2 2008 GL_PR_BA_ZCDJ5_2007 GL_PR_BA_ZCDJ6_2009 GL_PR_BA_ZCDJ6_2010 GL_PR_CT_61858C GL PR CT EGES 1991 GL_PR_CT_EHUU_1993 GL_PR_CT_FGTO_1997 GL_PR_CT_FGTO_1998 GL_PR_CT_FGTO_2000 GL PR CT FGTO 2005 GL_PR_CT_FGTO_2011 GL_PR_CT_FGTO_2012 GL_PR_CT_FKJB_2000 GL_PR_CT_FKJB_2003 GL_PR_CT_FNCM_2008 GL_PR_CT_FZVN_2012 GL_PR_CT_GACA_1990 GL_PR_CT_GACA_1991 GL_PR_CT_GLNE_1993 GL_PR_CT_MJPX9_1993 GL_PR_CT_NIGD_1992 GL_PR_CT_NIGD_1993 GL PR CT SHIP 1999 GL_PR_GL_18956 GL_PR_GL_18957 GL_PR_GL_61864 GL_PR_GL_68451 GL_PR_GL_68456 GL PR GL 68950 GL_PR_GL_68951

GL PR GL 68953 GL_PR_GL_68954 GL_PR_ML_EXRE0163_2012 GL PR PF 1900602 GL_PR_PF_1900848 GL_PR_PF_1900849 GL_PR_PF_6900098 GL_PR_PF_6900099 GL PR PF 6900102 GL_PR_PF_6900103 GL_PR_PF_6900119 GL_PR_PF_6900284 GL_PR_PF_6900287 GL_PR_PF_6900293 GL_PR_PF_6900294 GL_PR_PF_6900453 GL_PR_PF_6900502 GL PR PF 6900504 GL_PR_PF_6900505 GL_PR_PF_6900635 GL_PR_PF_6900659 GL PR PF 6900660 GL_PR_PF_6900661 GL_PR_PF_6900665 GL_PR_PF_6900677 GL_PR_PF_6900679 GL PR PF 6900794 GL_PR_PF_6900850 GL_PR_PF_6900903 GL_PR_PF_6900939 GL_PR_PF_6900981 GL_PR_PF_6900998 GL_PR_PF_6901084 GL_PR_PF_6901818 GL_PR_TE_1900024 GL_PR_TE_1900025 GL_PR_TE_1900026 GL_PR_TE_1900029 GL_PR_TE_61501 GL_PR_TE_61504 GL_PR_TE_6900089 GL_PR_TE_6900092 GL_PR_TE_6900093 GL_PR_TE_69011 GL PR TE 69013 GL_PR_TE_Pylos GL_PR_XB_ELZJ3_2004 GL_PR_XB_FABB_2004 GL_PR_XB_FABB_2006 GL_PR_XB_FABB_2008 GL PR XB FABB 2009 GL_PR_XB_FABB_2010

GL_	_PR_	_XB_	_FA	BB	_2	0	1	1				
GL_	_PR_	_XB_	_FA	BB	_2	0	1	2				
GL_	_PR_	_XB_	_FM	CY	_2	0	0	7				
GL_	_PR_	_XB_	_FN	СМ	_2	0	0	3				
GL_	_PR_	_XB_	_FN	CM	_2	0	0	7				
GL_	_PR_	_XB_	_FN	CM	_2	0	0	8				
GL_	_PR_	_XB_	_FN	OY	_1	9	9	2				
GL_	_PR_	_XB_	_FZ	VN	_2	0	0	0				
GL_	_PR_	_XB_	_FZ	VN	_2	0	0	1				
GL_	_PR_	_XB_	_FZ	VN	_2	0	0	2				
GL_	_PR_	_XB_	_FZ	VN	_2	0	0	3				
GL_	_PR_	_XB_	_FZ	VN	_2	0	0	9				
GL_	_PR_	_XB_	_IB	ΕX	_1	9	9	9				
GL_	_PR_	_XB_	_IC	GK	_2	0	0	5				
GL_	_PR_	_XB_	_IX	WQ	_2	0	0	5				
GL_	_PR_	_XB_	_KR	HG	_1	9	9	5				
GL_	_PR_	_XB_	_KV	WA	_1	9	9	2				
GL_	_PR_	_XB_	_ND	PG	_1	9	9	1				
GL_	_PR_	_XB_	_NJ	UL	_1	9	9	1				
GL_	_PR_	_XB_	NO	DC	31	Х	Y	_	1	9	92	2
GL_	_PR_	_XB_	NR	GB	_1	9	9	0				
GL_	_PR_	_XB_	_NT	SG	_1	9	9	4				
GL_	_PR_	_XB_	_NY	KN	_1	9	9	1				
GL_	_PR_	_XB_	NZ	XF	_1	9	9	0				
GL_	_PR_	_XB_	_PJ	JU	_1	9	9	3				
GL_	_PR_	_XB_	_SV	CQ	_1	9	9	9				
GL_	_PR_	_XB_	_SV	CQ	_2	0	0	0				
GL_	_PR_	_XB_	_YT	FL	_2	0	0	3				
GL_	_PR_	_XB_	_YT	FL	_2	0	0	5				
GL_	_PR_	_XB_	_ZC	KU	_1	9	9	2				
GL_	_PR_	_XB_	_ZM	CR	_1	9	9	3				
GL_	_TS_	_DB_	_61	50	1							
GL_	_TS_	_DB_	_61	50	3							
GL_	_TS_	_DB_	_61	65	3							
GL_	_TS_	_DB_	_61	68	7							
GL_	_TS_	_DB_	_61	69	1							
GL_	_TS_	_DB_	_61	70	0							
GL_	_TS_	_DB_	_61	75	5							
GL_	_TS_	_DB_	_61	78	5							
GL_	_TS_	_DB_	_61	78	6							
GL_	_TS_	_DB_	_61	78	9A							
GL_	_TS_	_DB_	_61	79	1							
GL_	_TS_	_DB_	_61	79	2A							
GL_	_TS_	_DB_	_61	80	5							
GL_	_TS_	_DB_	_61	80	6							
GL_	_TS_	_DB_	_61	80	7							
GL_	_TS_	_DB_	_61	81	2							
GL_	_TS_	_DB_	_61	81	5							
GL_	_TS_	_DB_	_61	82	0							
GL_	_TS_	_DB_	_61	82	4							
GL_	_TS_	_DB_	_61	82	5							
GL	_TS	_DB	_61	82	7							

GL_	_TS_	_DB_	618	328	8			
GL_	_TS_	_DB_	618	32	9			
GL_	_TS_	DB_	618	3	0			
GL_	TS_	DB	618	33	1			
GL_{-}	TS	DB	618	33	2			
GL	TS	DB	- 618	33	3			
GL	TS	DB	- 618	3!	5			
GL	TS	 DB	618	3	б			
GT.	~- ТS	 DB	618	3	8			
GT.	 TS	 	618	120	9			
GT.	_ <u></u>	_DB_	618	4'	2			
СЦ_ СЦ.	_ <u>דס</u> _ דיס	 	618	24	2			
СЦ_ СТ.	_ <u>דס</u> _ דפ	 	618	24	6			
CL.	_10_ TC	_םם_ פח	618	2Δ'	7			
GU_ CT	_1.0_	_םם מח	610) I) []	, ^			
GL_ AT	_1.9_	_םע_ מת	_010		0			
GL_ GT	_15_	_DR_	_010	55	0B			
GL_	_TS_	_DR_	_618	55	UC 1 ~			
GL_	_TS_	_DB_	618	55.	LC			
GL_	_TS_	_DB_	618	352	2C			
GL_	_TS_	_DB_	618	35.	3C			
GL_	_TS_	_DB_	618	35	4C			
GL_	_TS_	_DB_	618	35	6C			
GL_	_TS_	_DB_	618	35'	7			
GL_	_TS_	_DB_	618	6	2			
GL_	_TS_	_DB_	618	6	б			
GL_	_TS_	_DB_	618	6'	7			
GL_	_TS_	_DB_	618	88	1			
GL_	_TS_	DB_	618	88	2			
GL	ТS	DB	618	88	3			
GL^-	TS	DB	- 618	88	б			
GL	TS	DB	618	88	8			
GL	TS	DB	618	88	9			
GT.	 Т.S.	 DB	618	9	2			
GT.	~- דיכ	 DR	618	9	2			
СЦ_ СТ.	_ <u>דס</u> _ דיס	_םם_ את	618	19.	4			
СЦ_ СТ.	_ <u>דס</u> _ דיס	_םם_ את	618	191	5			
СЦ_ СТ.	_ <u>דס</u> _ דיס	_םם_ את	618	191	6			
GT.	_ <u></u>	_DB_	619	4'	7			
СЦ_ СТ.	_ <u>דס</u> _ דפ	 	619	4	, R			
СЦ_ СТ.	_ <u>דס</u> _ שת	_םם_ פת	619	י <u>ב</u> י ה קי	2			
СЦ.	_10_ TQ	_םם_ פת	619	5	ے م			
CL.	_10_ TC	_םם_ פח	610	5	a			
СЦ.	_10_ TQ	_םם_ פת	619	161 161	5			
CL.	_10_ TC	_םם_ פח	610	161	2 Q			
СТ_ СТ	_1.0_ _T.0_	_םח _םח	610	17.	0 1			
ст_ Ст	 	_םח _םח	פבט <u>-</u> הכא	· / ·	± ℃⊃			
ст_ Ст	_тр_		/ 2 ט_ יימת	, / דדנ	2 لك 1	00	F	
сь_ ат	_12_	_12_	DRF DRF	5H_ 	_⊥_	39	с С	
GГ ат	T.2	T.2		_V_	_2	00	9	~
GL_ a-	_TS_	_TS_	LUV	'X'	4_	20	U	0
GL_ a-	_TS_	_TS_	ĿLV	' X '	4_	20	0	3
GL_	$_{-TS}$	$_{-TS}$	ELV 	'X'	4_ -	20	0	4
GL	TS	TS	ELV	ΥŻ!	5	⊥9	9	9

GL_TS_TS_ELVZ5_2000 GL_TS_TS_ELVZ5_2001 GL_TS_TS_ELVZ6_2005 GL TS TS FABB 2008 GL_TS_TS_FABB_2010 GL_TS_TS_FABB_2011 GL_TS_TS_FGTO_2012 GL_TS_TS_FKJB_2011 GL_TS_TS_FZVN_2001 GL_TS_TS_FZVN_2007 GL_TS_TS_KS007_2011 MO_PR_BO_18338 MO_PR_BO_18340 MO_PR_BO_18425 MO_PR_BO_18440 MO_PR_BO_18863 MO_PR_BO_BABA MO_PR_BO_BIOMED MO_PR_BO_Monitoring MO_PR_BO_NIBEWN_F MO_PR_BO_OSTRA MO PR BO Rhodiber-EU MO_PR_BO_VILLEFRANCHEPOINTB MO_PR_CT_BOUSSOLE# MO_PR_CT_CYBOCYPRUSBASINOCEANOGRAPHY MO_PR_CT_DYNAPROC MO PR CT MAD MO_PR_CT_MDASSEMBLAGE MO_PR_CT_MFSPPVOS MO_PR_CT_MFSTEP MO_PR_CT_MPHMED MO_PR_CT_SeaGliders MO_PR_XB_ALMOFRONTLEG MO_PR_XB_MFSVOS MO_PR_XB_SHOM MO_TS_MO_68422 MO_TS_MO_ATHOS MO_TS_MO_LESVO MO_TS_MO_MYKON MO_TS_MO_SANTO

ANNEX 2

List of not validated files (discarded by the validation procedure)

Bad SALINITY RT QC flags for files:

GL_PR_PF_1900849 GL_PR_TE_69013 GL_PR_XB_FZVN_2001 GL_TS_MO_61196 GL_TS_MO_61197 GL_TS_MO_61430 MO_PR_BO_OSTRA MO_PR_CT_MFSPPVOS MO_PR_XB_ALMOFRONTLEG MO_PR_XB_CALMAR MO_PR_XB_MFSVOS MO_PR_XB_NCMRXB MO_PR_XB_PRISMED MO_PR_XB_SHOM

Bad TEMPERATURE RT QC flags for files:

GL_PR_BA_62845 GL_PR_XB_MNDC9_2007 GL_PR_XB_ZCDJ2_2007 GL_TS_DB_61300 GL_TS_MO_61196 GL_TS_MO_61197 GL_TS_MO_61430

Bad TIME RT QC flags for files:

GL_TS_BO_FMCY_2010 GL_TS_BO_FMCY_2011 GL_TS_BO_FNCM_2009 GL_TS_BO_FNCM_2011 GL_TS_BO_FVHY_2010 GL_TS_BO_FZVN_2009 GL_TS_BO_FZVN_2010 GL_TS_BO_FZVN_2011 GL_TS_TS_EDSV_2006 GL_TS_TS_MCSJ9_2011

Bad POSITION RT QC flags for files:

GL_PR_BA_61501 GL_PR_BA_GACJ_1998 GL_PR_PF_6900675 GL_PR_XB_IABA_2006 GL_PR_XB_IXWQ_2006 GL_PR_XB_MNDC9_2007

GL_	$_{TS}$	_BO_	_FMCY_	_2010
GL_	_TS_	_BO_	_FMCY_	_2011
GL_	_TS_	_BO_	_FNCM_	2009
GL_	_TS_	_BO_	_FNCM_	2011
GL_	_TS_	_BO_	_FVHY_	_2010
GL_	_TS_	_BO_	_FZVN_	2009
GL_	_TS_	_BO_	_FZVN_	2010
GL_	_TS_	_BO_	_FZVN_	_2011
GL_	_TS_	_TS_	_FGTO_	1998
GL_	_TS_	_TS_	_FGTO_	2001
GL_	_TS_	_TS_	_FGTO_	2002
GL_	_TS_	_TS_	_FGTO_	2003
GL_	_TS_	_TS_	_FGTO_	2004
GL_	_TS_	_TS_	_FGTO_	2006
GL_	_TS_	_TS_	_FGTO_	2007
GL_	_TS_	_TS_	_FGTO_	2009
GL_	_TS_	_TS_	_FGTO_	2010
GL_	_TS_	_TS_	_FGTO_	_2011
GL_	_TS_	_TS_	_FNCM_	2002
GL_	_TS_	_TS_	_FNCM_	2003
GL_	_TS_	_TS_	_FQBE_	2001
GL_	_TS_	_TS_	_FQBE_	2011
GT.	ΤS	TS	FZVN	2002

SALINITY RT QC flags is equal to 0 for files:

GL TS BO FMCY 2010 GL_TS_BO_FMCY_2011 GL_TS_BO_FNCM_2009 GL_TS_BO_FNCM_2011 GL_TS_BO_FVHY_2010 GL_TS_BO_FZVN_2009 GL_TS_BO_FZVN_2010 GL_TS_BO_FZVN_2011 GL_TS_DB_KS065_2008 GL_TS_DB_KS066_2008 GL_TS_DB_KS077_2008 GL_TS_DB_KS088_2009 GL_TS_DB_KS089_2009 GL TS TS DBKV 2008 GL_TS_TS_FGTO_2001 GL_TS_TS_FGTO_2002 GL_TS_TS_FGTO_2003 GL_TS_TS_FGTO_2004 GL_TS_TS_FQBE_2001 GL_TS_TS_FQBE_2011 GL_TS_TS_KS026_2010 GL_TS_TS_KS034_2009 GL_TS_TS_KS065_2008 GL_TS_TS_KS066_2009 GL_TS_TS_KS066_2010

GL_TS_TS_KS076_2009 GL_TS_TS_KS080_2009 GL_TS_TS_KS080_2010 GL_TS_TS_KS085_2010 GL_TS_TS_KS088_2009 GL_TS_TS_KS089_2009 GL_TS_TS_KS089_2010

TEMPERATURE RT QC flags is equal to 0 for files:

GL_TS_DB_KS065_2008 GL_TS_DB_KS066_2008 GL_TS_DB_KS077_2008 GL_TS_DB_KS088_2009 GL TS DB KS089 2009 GL_TS_TS_DBKV_2008 GL_TS_TS_FGTO_2002 GL_TS_TS_FGTO_2003 GL_TS_TS_FGTO_2004 GL_TS_TS_FGTO_2006 GL_TS_TS_FGTO_2007 GL_TS_TS_FGTO_2010 GL_TS_TS_FQBE_2011 GL_TS_TS_KS026_2009 GL_TS_TS_KS034_2009 GL_TS_TS_KS065_2008 GL_TS_TS_KS076_2009 GL TS TS KS080 2009 GL_TS_TS_KS085_2010 GL_TS_TS_KS088_2009 GL_TS_TS_KS088_2011

TIME RT QC flags is equal to 0 for files:

GL_PR_GL_61786

DEPH RT QC flags is equal to 0 for files:

GL_TS_BO_FMCY_2010 GL_TS_BO_FMCY_2011 GL_TS_BO_FNCM_2009 GL_TS_BO_FNCM_2011 GL_TS_BO_FVHY_2010 GL_TS_BO_FZVN_2009 GL_TS_BO_FZVN_2010 GL_TS_BO_FZVN_2011

TIME RT QC flags are equal to 9 for files:

GL_TS_TS_FABB_2003 GL_TS_TS_FNCM_2002 GL_TS_TS_FNCM_2003 GL_TS_TS_FNFP_2003 GL_TS_TS_FZVN_2002

POSITION RT QC flags are equal to 9 for files:

GL_TS_TS_FABB_2003 GL_TS_TS_FNFP_2003

Out of Mediterranean Sea files:

GL PR BA DACF 2003 GL_PR_BA_KWAL_1997 GL_PR_PF_7900466 GL_PR_TE_JRFC_2009 GL_PR_XB_DLEZ_1992 GL PR XB WSRL 1995 GL_TS_DB_13901 GL_TS_DB_41852 GL_TS_DB_44607 GL_TS_DB_44616 GL_TS_DB_46514 GL_TS_DB_61353 GL_TS_DB_61670 GL_TS_DB_61671 GL_TS_DB_6202508 GL_TS_DB_6202514 GL_TS_DB_6202542 GL_TS_DB_62503 GL_TS_DB_62716 GL_TS_DB_62772 GL_TS_DB_62773 GL_TS_DB_62774 GL_TS_DB_62775 GL_TS_DB_62776 GL_TS_DB_62810 GL_TS_DB_62811 GL_TS_DB_62828 GL_TS_DB_62899 GL_TS_DB_62948 GL_TS_DB_62961 GL_TS_DB_63525 GL_TS_DB_66862 GL_TS_DB_DJOK_2006 GL_TS_DB_IF000175 GL TS DB IF000177

GL_TS_DB_IF000184 GL_TS_DB_IF000186 GL_TS_DB_IF000239 GL_TS_DB_IF000380 GL_TS_DB_IF000380 GL_TS_DB_IF000481 GL_TS_DB_IF000484 GL_TS_DB_IF000492 GL_TS_MO_62091 GL_TS_TS_DBF0_2008 GL_TS_TS_DJOK_2008 GL_TS_TS_DJOK_2008 GL_TS_TS_FNCM_1999 GL_TS_TS_IF000087_1991 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_IF000088_1993	GL_TS_DB_IF000178
GL_TS_DB_IF000186 GL_TS_DB_IF000239 GL_TS_DB_IF000380 GL_TS_DB_IF000394 GL_TS_DB_IF000481 GL_TS_DB_IF000484 GL_TS_DB_IF000492 GL_TS_MO_62091 GL_TS_TS_DBF0_2008 GL_TS_TS_DJOK_2008 GL_TS_TS_ELWX5_2007 GL_TS_TS_FNCM_1999 GL_TS_TS_IF000087_1991 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_IF000088_1993 GL_TS_TS_IF000088_1993 GL_TS_TS_IF000088_1993	GL_TS_DB_IF000184
GL_TS_DB_IF000239 GL_TS_DB_IF000380 GL_TS_DB_IF000394 GL_TS_DB_IF000481 GL_TS_DB_IF000484 GL_TS_DB_IF000492 GL_TS_MO_62091 GL_TS_TS_DBF0_2008 GL_TS_TS_DJOK_2008 GL_TS_TS_ELWX5_2007 GL_TS_TS_FNCM_1999 GL_TS_TS_IF000087_1991 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_IF000088_1993 GL_TS_TS_IF000088_1993 GL_TS_TS_IF000088_1993	GL_TS_DB_IF000186
GL_TS_DB_IF000380 GL_TS_DB_IF000394 GL_TS_DB_IF000481 GL_TS_DB_IF000484 GL_TS_DB_IF000492 GL_TS_MO_62091 GL_TS_TS_DBF0_2008 GL_TS_TS_DJOK_2008 GL_TS_TS_ELWX5_2007 GL_TS_TS_FNCM_1999 GL_TS_TS_IF000087_1991 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_IF000088_1993 GL_TS_TS_IF000088_1993	GL_TS_DB_IF000239
GL_TS_DB_IF000394 GL_TS_DB_IF000481 GL_TS_DB_IF000484 GL_TS_DB_IF000492 GL_TS_MO_62091 GL_TS_TS_DBF0_2008 GL_TS_TS_DJOK_2008 GL_TS_TS_ELWX5_2007 GL_TS_TS_FNCM_1999 GL_TS_TS_IF000087_1991 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_IF000088_1993	GL_TS_DB_IF000380
GL_TS_DB_IF000481 GL_TS_DB_IF000484 GL_TS_DB_IF000492 GL_TS_MO_62091 GL_TS_TS_DBF0_2008 GL_TS_TS_DJOK_2008 GL_TS_TS_ELWX5_2007 GL_TS_TS_FNCM_1999 GL_TS_TS_IF000087_1991 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_IF000088_1993 GL_TS_TS_IF000088_1993	GL_TS_DB_IF000394
GL_TS_DB_IF000484 GL_TS_DB_IF000492 GL_TS_MO_62091 GL_TS_TS_DBF0_2008 GL_TS_TS_DJOK_2008 GL_TS_TS_ELWX5_2007 GL_TS_TS_FNCM_1999 GL_TS_TS_IF000087_1991 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_FNCM_2011	GL_TS_DB_IF000481
GL_TS_DB_IF000492 GL_TS_MO_62091 GL_TS_TS_DBF0_2008 GL_TS_TS_DJOK_2008 GL_TS_TS_ELWX5_2007 GL_TS_TS_FNCM_1999 GL_TS_TS_IF000087_1991 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_IF000088_1993	GL_TS_DB_IF000484
GL_TS_MO_62091 GL_TS_TS_DBFO_2008 GL_TS_TS_DJOK_2008 GL_TS_TS_ELWX5_2007 GL_TS_TS_FNCM_1999 GL_TS_TS_IF000087_1991 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_IF000088_1993	GL_TS_DB_IF000492
GL_TS_TS_DBFO_2008 GL_TS_TS_DJOK_2008 GL_TS_TS_ELWX5_2007 GL_TS_TS_FNCM_1999 GL_TS_TS_IF000087_1991 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_IF000088_1993	GL_TS_MO_62091
GL_TS_TS_DJOK_2008 GL_TS_TS_ELWX5_2007 GL_TS_TS_FNCM_1999 GL_TS_TS_IF000087_1991 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_F000088_1993	GL_TS_TS_DBFO_2008
GL_TS_TS_ELWX5_2007 GL_TS_TS_FNCM_1999 GL_TS_TS_IF000087_1991 GL_TS_TS_IF000087_1992 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_F000088_1993	GL_TS_TS_DJOK_2008
GL_TS_TS_FNCM_1999 GL_TS_TS_IF000087_1991 GL_TS_TS_IF000087_1992 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_F000088_1993	GL_TS_TS_ELWX5_2007
GL_TS_TS_IF000087_1991 GL_TS_TS_IF000087_1992 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_KS005_2011	GL_TS_TS_FNCM_1999
GL_TS_TS_IF000087_1992 GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_KS005_2011	GL_TS_TS_IF000087_1991
GL_TS_TS_IF000087_1993 GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_KS085_2011	GL_TS_TS_IF000087_1992
GL_TS_TS_IF000087_1994 GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993 GL_TS_TS_KS005_2011	GL_TS_TS_IF000087_1993
GL_TS_TS_IF000087_1995 GL_TS_TS_IF000088_1993	GL_TS_TS_IF000087_1994
GL_TS_TS_IF000088_1993	GL_TS_TS_IF000087_1995
	GL_TS_TS_IF000088_1993
GL_15_15_K5065_2011	GL_TS_TS_KS085_2011

ANNEX 3

List of anomalous files

DATA DUPLICATION:

GL_PR_BA_IBEX_1999 GL_PR_BA_SHIP_1997 GL_PR_BA_SHIP_1998 GL_PR_BA_SHIP_2001 GL_PR_BA_SHIP_2006 GL_PR_TE_61501 GL_PR_XB_FABB_2004 GL_PR_XB_FABB_2010 GL_TS_TS_FZVN_2007

ANNEX: BLACK SEA

ANNEX 4

List of files whose some/all temperature and/or salinity QC flags have been changed

SALINITY QC FLAGS CHANGED FOR FILES:

BS_PR_CT_0699_1990-2000 BS PR CT 10077 BS_PR_CT_10078 BS_PR_CT_10079 BS_PR_CT_10083 BS_PR_CT_10089 BS_PR_CT_10093 BS_PR_CT_10094 BS_PR_CT_10095 BS_PR_CT_10096 BS PR CT 10097 BS_PR_CT_10098 BS_PR_CT_10099 BS_PR_CT_10106 BS_PR_CT_10133 BS_PR_CT_10201 BS_PR_CT_10205 BS_PR_CT_12287 BS_PR_CT_15AK1995077 BS_PR_CT_15AK2002084 BS_PR_CT_15AK2002086 BS PR CT 15AK2003089 BS_PR_CT_15AK2003091 BS_PR_CT_15AK2003092 BS_PR_CT_15AK2004096 BS_PR_CT_15AK2004100 BS_PR_CT_15AK2005103 BS_PR_CT_15AK2005104 BS PR CT 15AK2005108 BS_PR_CT_15AK2005110 BS_PR_CT_15AK2006112 BS_PR_CT_15AK2006113 BS_PR_CT_15AK2006114 BS_PR_CT_15AK2006120 BS_PR_CT_15AK_2001-2002 BS_PR_CT_15B01998002 BS_PR_CT_15B0200006 BS_PR_CT_170 BS_PR_CT_171

BS PR CT 223 BS_PR_CT_260 BS_PR_CT_316N_2001-2003 BS PR CT 7301 1994-1994 BS_PR_CT_89CU_1992-1996 BS_PR_CT_89M1_1996-1997 BS_PR_CT_89M2_1996-1996 BS PR CT 9018 1990-1991 BS PR CT 9065 1990-1990 BS_PR_CT_907Z_1995-1995 BS_PR_CT_908R_1991-1991 BS_PR_CT_90AK_1990-1991 BS_PR_CT_90B8_1994-1994 BS_PR_CT_90CK_1991-1995 BS_PR_CT_90D4_1990-1998 BS_PR_CT_90H7_1995-1996 BS_PR_CT_90KE_1990-1992 BS PR CT 90ML 1990-1992 BS_PR_CT_90PY_1990-1990 BS_PR_CT_90T3_1990-1991 BS_PR_CT_90V2_1990-1998 BS PR CT 90VT 1991-1993 BS_PR_CT_90YG_1990-1991 BS_PR_CT_AK119 BS_PR_CT_AK122 BS_PR_CT_AKVANAVT_03_1995 BS_PR_CT_AKVANAVT_10_1994 BS_PR_CT_AQUALOG Moored Profiler BS_PR_CT_AR_V09405 BS_PR_CT_BUG54a BS_PR_CT_CKL1990 BS_PR_CT_CKL1991 BS_PR_CT_DBUO BS_PR_CT_GAK38A BS_PR_CT_GALS1990 BS_PR_CT_GD91-07 BS_PR_CT_GD92-05 BS_PR_CT_GD93-05 BS_PR_CT_GD94-05 BS_PR_CT_GD95-05 BS_PR_CT_GD95-10 BS_PR_CT_GOPT25 BS_PR_CT_Ilyichevsk BS_PR_CT_K.GALL9007 BS PR CT K.KOMS9006 BS_PR_CT_K.KOMS9007 BS_PR_CT_K.KOMS9108 BS_PR_CT_KREN57 BS_PR_CT_MECH9 BS_PR_CT_ML54 BS PR CT NPT1990 BS_PR_CT_NPT1991

BS_PR_CT_NPT1992 BS_PR_CT_NPT1993 BS_PR_CT_NPT1994 BS PR CT NPT1995 BS_PR_CT_NPT1996 BS_PR_CT_NPT1997 BS_PR_CT_NPT1998 BS_PR_CT_ODV-Sozopol01-1990-0 BS PR CT ODV-Sozopol01-1990-1 BS_PR_CT_OSIP9205 BS_PR_CT_OSIP9206 BS_PR_CT_Ochakov BS_PR_CT_PAR10 BS_PR_CT_PAR11 BS_PR_CT_PAVL9209 BS_PR_CT_PK27_1 BS_PR_CT_PK27_2 BS_PR_CT_PK28 BS_PR_CT_PK29 BS_PR_CT_PK30 BS_PR_CT_PK33 BS PR CT PRB1990 BS_PR_CT_PSKVK9005 BS_PR_CT_PSKVK9011 BS_PR_CT_PSKVK9204 BS_PR_CT_PSKVK9309 BS_PR_CT_PSKVK9507 BS_PR_CT_PSKVK9809 BS_PR_CT_PV32 BS_PR_CT_PV33 BS_PR_CT_PV34 BS PR CT PV35 BS_PR_CT_PV37 BS_PR_CT_PV45 BS_PR_CT_PV48 BS_PR_CT_PV49 BS_PR_CT_PV52 BS_PR_CT_PV55 BS_PR_CT_SH-9303 BS_PR_CT_SH-9704 BS_PR_CT_SH-9705 BS_PR_CT_SH-9706 BS_PR_CT_SH-9809 BS_PR_CT_SH-9909 BS PR CT SNU-FF 04-04 BS_PR_CT_Sozopol _03 BS_PR_CT_Sozopol_04 BS_PR_CT_TFN1990 BS_PR_CT_TFN1991 BS_PR_CT_TR10 BS_PR_CT_TR15 BS_PR_CT_TR16

BS_PR_CT_TR17 BS_PR_CT_TR9 BS_PR_CT_URGP_1992-1992 BS PR CT URME 1990-1993 BS_PR_CT_UROS_1992-1993 BS_PR_CT_URQH_1990-1998 BS_PR_CT_URTR_1992-1993 BS_PR_CT_USH61 BS PR CT V200409 BS_PR_CT_V2010B04 BS_PR_CT_VA200302 BS_PR_CT_VEGA1991 BS_PR_CT_Yalta GL_PR_PF_1901200 GL_PR_PF_4900541 GL_PR_PF_4900542 GL_PR_PF_6900804 GL_PR_PF_6900805

TEMPERATURE QC FLAGS CHANGED FOR FILES:

BS_PR_CT_0699_1990-2000 BS_PR_CT_10076 BS_PR_CT_10077 BS_PR_CT_10079 BS_PR_CT_10082 BS_PR_CT_10084 BS PR CT 10093 BS_PR_CT_10094 BS_PR_CT_10095 BS_PR_CT_10097 BS_PR_CT_10098 BS_PR_CT_10099 BS_PR_CT_10104 BS_PR_CT_10105 BS_PR_CT_10106 BS_PR_CT_15AK1995077 BS_PR_CT_15AK2002086 BS_PR_CT_15AK2003088 BS_PR_CT_15AK2003089 BS_PR_CT_15AK2003092 BS_PR_CT_15AK2004096 BS_PR_CT_15AK2004100 BS_PR_CT_15AK2005104 BS_PR_CT_15AK2005108 BS_PR_CT_15AK2005110 BS_PR_CT_15AK2006113 BS_PR_CT_15AK2006116 BS_PR_CT_15AK2006117 BS_PR_CT_15AK2006120 BS_PR_CT_15AK2007131 BS_PR_CT_15AK_2001-2002

BS_PR_CT_15B01998002 BS_PR_CT_15B0200006 BS_PR_CT_15B0_1998-2000 BS PR CT 167 BS_PR_CT_222 BS_PR_CT_233 BS_PR_CT_260 BS_PR_CT_316N_2001-2003 BS PR CT 89CU 1992-1996 BS_PR_CT_89M1_1996-1997 BS_PR_CT_902B_1990-1995 BS_PR_CT_90AK_1990-1991 BS_PR_CT_90CK_1991-1995 BS_PR_CT_90H7_1995-1996 BS_PR_CT_90JU_1996-1996 BS_PR_CT_90ML_1990-1992 BS_PR_CT_90V2_1990-1998 BS PR CT 90VC 1990-1993 BS_PR_CT_90YG_1990-1991 BS_PR_CT_A9801 BS_PR_CT_AK122 BS PR CT AR VO9405 BS_PR_CT_AR_V09611 BS_PR_CT_BUG54a BS_PR_CT_BUG54b BS_PR_CT_BUG56 BS PR CT BUG57 BS_PR_CT_CKL1991 BS_PR_CT_GAK38A BS_PR_CT_GAK38B BS_PR_CT_GD94-05 BS_PR_CT_GD95-10 BS_PR_CT_Ilyichevsk BS_PR_CT_KIEV4 BS_PR_CT_KREN57 BS_PR_CT_KREN58 BS_PR_CT_KREN59 BS_PR_CT_MECH9 BS_PR_CT_MERAC9002 BS_PR_CT_ML53_A BS_PR_CT_ML54 BS_PR_CT_NPT1990 BS_PR_CT_NPT1991 BS_PR_CT_NPT1992 BS PR CT NPT1993 BS_PR_CT_NPT1995 BS_PR_CT_NPT1996 BS_PR_CT_NPT1997 BS_PR_CT_NPT1998 BS_PR_CT_ODV-Sozopol01-1991-1 BS_PR_CT_OSIP9206 BS_PR_CT_Odessa

BS_PR_CT_PAR11 BS_PR_CT_PAR1600 BS_PR_CT_PAR4141 BS PR CT PAR7b BS_PR_CT_PAVL9209 BS_PR_CT_PK27_1 BS_PR_CT_PK29 BS_PR_CT_PK30 BS PR CT PK33 BS_PR_CT_PSKVK9005 BS_PR_CT_PSKVK9011 BS_PR_CT_PSKVK9102 BS_PR_CT_PSKVK9105 BS_PR_CT_PSKVK9205 BS_PR_CT_PSKVK9410 BS_PR_CT_PSKVK9506 BS_PR_CT_PSKVK9507 BS PR CT PSKVK9809 BS_PR_CT_PV31 BS_PR_CT_PV33 BS_PR_CT_PV35 BS PR CT PV36 BS_PR_CT_PV37 BS_PR_CT_PV40 BS_PR_CT_PV45 BS_PR_CT_PV48 BS PR CT PV49 BS_PR_CT_PV55 BS_PR_CT_SH-9202 BS_PR_CT_SH-9302 BS_PR_CT_SH-9402 BS_PR_CT_SH-9705 BS_PR_CT_SH-9901 BS_PR_CT_SH-9909 BS_PR_CT_SHOM-1994 BS_PR_CT_SHOM-1997 BS_PR_CT_SHOM-1998 BS_PR_CT_SHOM-1999 BS_PR_CT_SHOM-2000 BS_PR_CT_SHOM-2001 BS_PR_CT_SNU-FF_B_09-11 BS_PR_CT_TR15 BS_PR_CT_TR17 BS_PR_CT_TR18 BS PR CT URKI 1994-1995 BS_PR_CT_URME_1990-1993 BS_PR_CT_URQH_1990-1998 BS_PR_CT_URTR_1992-1993 BS_PR_CT_USH1570 BS_PR_CT_USH59a BS_PR_CT_USH61 BS_PR_CT_V2006B01

BS_PR_CT_VA200301 BS_PR_CT_VA200504 BS_PR_CT_VOL1584 BS_PR_CT_YN1995 BS_PR_CT_YN1996A BS_TS_MO_Galata_00001 GL_PR_PF_1901200 GL_PR_PF_4900489 GL PR PF 4900540 GL_PR_PF_4900541 GL_PR_PF_4900542 GL_PR_PF_6900803 GL_PR_PF_6901960 GL_PR_PF_6901961 GL_PR_TE_61546 GL_PR_TE_61768 GL_PR_TE_61769 GL_TS_DB_61557 GL_TS_DB_61767 GL_TS_DB_61768 GL_TS_DB_61769

ANNEX 5

List of not validated files (discarded by the validation procedure)

Bad SALINITY RT QC flags for files:

BS_PR_CT_ODV-Sozopol01-1993-1 BS_PR_CT_PSKVK9806 BS_PR_CT_RP_1 BS_PR_CT_SHOM-1994 BS_PR_CT_SHOM-1994 BS_PR_CT_SHOM-1995 BS_PR_CT_SHOM-1997 BS_PR_CT_SHOM-1998 BS_PR_CT_SHOM-1999 BS_PR_CT_SHOM-2000 BS_PR_CT_SHOM-2001 BS_PR_CT_SHOM-2002 BS_PR_CT_SSS

Bad TEMPERATURE RT QC flags for files:

BS_PR_CT_RP_1 BS_PR_CT_SSSS

Bad POSITION RT QC flags for files:

 $GL_{TS}DB_{61554}$

TEMPERATURE RT QC flags is equal to 0 for files:

 $GL_{TS}DB_{61553}$

TEMPERATURE RT QC flags are equal to 9 for files:

BS_PR_CT_15AK2010200

ANNEX 6

List of anomalous files

DATA DUPLICATION:

BS_TS_MO_Galata_00001 GL_PR_TE_61768

REFERENCES

- Karina von Schuckmann and Cécile Cabanés (2010): Validation methods of temperature and salinity measurements: Application on global measurements performed at the Coriolis data center.
- Notarstefano G., Bussani A. and Bolzon G. (2011). Assessment of temperature and salinity data obtained from in-situ platforms in the Mediterranean Sea (2011) 2011/67 OGA 27 SIRE dd. 3/8/2011
- Scientific Calibration (ScCp) and Validation Plan (ScVP). Calibration report for WP15 InSitu TAC V1 (2010). Technical note.