

CIRCOLAZIONE SUPERFICIALE NEL MAR NERO MEDIANTE GALLEGGIANTI DAL 1999 AL 2003

PARTE I : STUDIO DESCRITTIVO E STATISTICHE EULERIANE

R. BARBANTI & P.-M. POULAIN

_	•	. 1	
Par	comunicato	annrovato da:	
LUL	Comunicato	approvato da.	

Dr. Renzo Mosetti

Direttore, Dipartimento di Oceanografia

SOMMARIO:

1. Introduzione	Pagina 3
2. Dati e metodi	Pagina 7
2.1 Strumenti e trattamento dei dati	Pagina 7
2.2 Distribuzione temporale dei dati	Pagina 10
2.3 Distribuzione spaziale dei dati	Pagina 13
3. Statistiche euleriane	Pagina 17
3.1 Scala spaziale	Pagina 17
3.2 Campi di velocità media e variabilità	Pagina 22
3.3 Stagionalita	Pagina 24
3.4 Tempo di residenza	Pagina 37
3.5 Relazione tra corrente e batimetria	Pagina 39
4. Conclusioni	Pagina 48
5. ReferenzeI	Pagina 50

1. Introduzione

Il Mar Nero è situato ad una latitudine compresa tra 40° 3.42' N e 46° 1.98' N (figura 1) ed è profondo circa 2200 metri con larghezza massima in longitudine di 1148 km. E' un mare semichiuso, povero di vita, risultato dello scarso scambio di acqua con il Mediterraneo, al quale è collegato attraverso lo Stretto del Bosforo. La penisola di Crimea e parte della costa della Turchia dividono il mare in due sotto-bacini (est ed ovest); vi è inoltre, un'ampia piattaforma a nord ovest denominata (North West Shelf, NWS) con estensione variabile rispetto alla costa da 2 a 12 km.

Il Mar Nero è caratterizzato da un elevato apporto di acque dolci del quale 1'80% è concentrato nella NWS ove è presente il delta del Danubio; è fortemente influenzato da contaminazione dovuta allo scarico di fiumi e corsi d'acqua, città e di da parte di navi. Poiché l'inquinamento avviene dalla zona costiera o più prossima la costa, allora, studi di mescolamento orizzontale, dovuto a trasporti mediante strutture a mesoscala tra zone costiere e mare aperto sono particolarmente importanti.

La circolazione generale negli strati superficiali di questo bacino secondo le più recenti descrizioni [Oguz et al.,1993; Korotoev et al., 2003; Zatsepin et al., 2003] è caratterizzata dalle seguenti strutture: 1) una corrente ciclonica lungo costa a scala di bacino denominata Rim Current, 2) una cella interna composta da due o più vortici ciclonici, 3) una serie di vortici quasi stabili o ricorrenti posti tra costa e la Rim Current denominati rispettivamente: Bosforo, Batumi, Sukhumi, Caucasus, Kerch, Crimea, Sevastopol, Danube, Constantsa, e Kaliakra (NAE) (figura 1).

Sovrapposti a queste strutture avvengono attività transitorie a mesoscala sotto forma di meandri, biforcazioni della Rim Current vicino alla punta sud della penisola di Crimea; qui una branchia segue verso sud ovest la linea topografica della scarpata continentale e un'altra fluisce internamente, in zona di piattaforma, in direzione nord ovest, per convergere successivamente all'altra lungo la costa della Bulgaria e Turchia. [Korotoev et al., 2003]. Inoltre si è notata la presenza di vortici anticiclonici estesi nella parte nord/nord-ovest della piattaforma continentale (Danubio). Analisi mostrano che l'energia delle strutture a mesoscala è principalmente

confinata lungo la Rim Current. La scala temporale tipica dei meandri della Rim Current è tra 50 e 150 giorni.

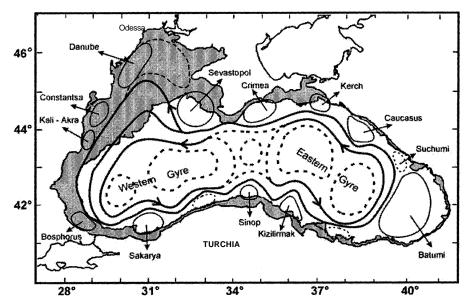


Figura 1. Mappa schematica delle principali strutture riguardanti la circolazione negli strati superficiali (da Korotaev et al., 2003).

Il vortice Bosphorus ha vita media di 85 giorni ed è stato osservato in media 260 giorni per anno. Una catena di vortici sulla costa turca ha un carattere più intermittente e viaggia lentamente verso est. I vortici Samara, Sinop e Kizilirmak tendono ad essere più stabili per il controllo esercitato dalla topografia della zona. Il Batumi oltre ad essere il più esteso è anche il più intenso e persistente tra i vortici costieri del Mar Nero, si forma regolarmente ai primi di marzo e vive fino a fine di ottobre con una vita media per anno di 210 giorni. Il Suckumi si manifesta per circa 120 giorni per anno e vive circa un mese dopo la sua formazione che è tipicamente autunnale o dei primi mesi dell'inverno quando il Batumi non è presente. Il Cucasus appare per 160 giorni per anno prevalentemente nei giorni primaverili, la sua vita media è di circa 2 mesi, ma può durare anche per più di 9 mesi, interagisce con Suckumi e Kerch ed è accompagnato da un grande meandro della Rim Current verso la parte centrale del bacino est. Il Kerch ha una persistenza di 240 giorni ed una vita media di 80 giorni, si trova con più probabilità in primavera ed autunno. Il vortice di Crimea si verifica prevalentemente in agosto - settembre e si osserva per circa 115 giorni l'anno, il periodo medio di ogni evento è di circa un mese. Inverno ed estate sono le stagioni preferite dal vortice di Sevastopol, durante tali stagioni è stato osservato per circa 150 giorni per anno, con una vita media di 50 giorni; esso si

forma come un doppio prodotto di un intenso meandro della Rim Current o come una parte di biforcazione della stessa, lungo la costa ovest di Crimea.

La zona di piattaforma (NWS) è governata permanentemente da una vorticità anticiclonica determinata dal vento. Per il 55% del tempo la vorticità è confinata all'interno di una stretta banda lungo la costa fra Odessa e Constantsa (vortice Danube) e qualche volta si espande e occupa un'ampia porzione di piattaforma. I vortici Constantsa e Kaliakra si sono osservati per circa 190 giorni per anno una vita media di 50 giorni.

Durante alcuni periodi vortici anticiclonici si osservano, non solo tra la costa e la Rim Current ma essi occupano anche la parte centrale del bacino. Questi anticicloni hanno diametri di 80-100 km e penetrano in profondità nel picnoclino (fino a 300-400 m), a loro velocità orbitale tipica è di 0.15-0.50 m/s, che è dello stesso ordine di grandezza della Rim Current. Essi giocano un ruolo importante nel mescolamento orizzontale delle acque superficiali del Mar Nero [Zatsepin et al., 2003].

Il mescolamento maggiore si verifica qualora una coppia di vortici, di cui uno è ciclonico e l'altro anticiclonico, vengono a contatto, oppure, attraverso l'interazione tra un vortice e la Rim Current, in quest'ultimo caso la Rim Current può allontanarsi di molto dalla costa e dividersi in molti filoni. E' possibile che la variabilità inter-annuale e intra-stagionale, e la variabilità sinottica/locale del vento siano i fattori determinanti per la formazione di tali strutture a mesoscala [Zatsepin et al., 2003].

Nel 1987 si ebbe il primo tentativo di utilizzare delle boe galleggianti (in seguito verranno anche chiamati "drifter") in Mar Nero. Furono utilizzati 14 boe superficiali denominate LOBAN ed utilizzate dal 1987 al 1997 al fine di monitorare in prevalenza la Rim Current attorno al perimetro del bacino utilizzando anche immagini di temperatura superficiale (SST) da radiometro infrarosso (AVHRR) su satelliti NOAA [Motyzhev et al., 2000]. Questo studio mise in luce una dinamica estiva significativamente differente da una invernale, la prima presenta una più intensa attività nella variabilità di mesoscala ed un carattere intermittente nella Rim Current; la seconda caratterizzata da una circolazione ciclonica chiusa attorno al bacino ed una minor attività nella mesoscala. Le stagioni con prevalente attività nella mesoscala sono estate e autunno, non solo vicino alla Rim Current ma anche in centro bacino [Motyzhev et al., 2000].

Un ulteriore studio lo svolse nel 1992 Eremeev, il quale attraverso l'implementazione di alcuni dati di drifter in un modello matematico e considerando anche dati climatici, cercò di ricostruire le caratteristiche del moto delle particelle nella circolazione superficiale in Mar Nero [Eremeev et al., 1992].

Nel 1991, Sybrandy e Niiler [1991] svilupparono un nuovo tipo di galleggiante chiamato SVP; la caratteristica principale era nell'avere un'ancora "holey-sock" a circa 15 m. Questo tipo di galleggiante segue meglio la corrente sottosuperficiale rispetto al LOBAN che risulta più influenzato da onde e vento. Questo nuovo dispositivo lagrangiano fu utilizzato durante la campagna "Black Sea 99", che si tenne durante l'estate e l'autunno del 1999 nel nord-est del Mar Nero, che coinvolse scienziati russi, turchi, ucraini e per la prima volta, adottò una strategia che comprendeva: 1) misure lagrangiane, 2) misure satellitari di temperatura superficiale, e 3) misure idrografiche. Questo studio rivelò una inusuale circolazione anticiclonica nella zona centro est del bacino costituta da un vortice di 150 km di estensione (in sezione) con velocità orbitale di 15-20 cm/s e un secondo vortice ciclonico a nord di esso vicino alla Rim Current con velocità orbitale di 25-30 cm/s [Motyzhev et al., 2000; Afanasyev et al., 2002] e tra questa struttura a dipolo e la costa russa è presente un "jet" della Rim Current con velocità 2 o 3 volte minore. Le zone centrali, sia del bacino ovest sia del bacino est sono zone a forte attività nella mesoscala con predominanza di strutture anticicloniche.

Dal mese di settembre del 1999 fino al mese di ottobre 2003 in Mar Nero hanno operato un totale di 53 boe galleggianti. Parte di questi dati, dal 1999 al 2002, sono già stati analizzati da Zhurbas et al. [2002] i quali descrivono la circolazione superficiale e alcune strutture su diverse scale spaziali. Questo nostro studio vuole analizzare i dati, dell'intero database dal 1999-2003, ottenuti nell'ambito del programma internazionale di drifter in Mar Nero, per descriverne la circolazione superficiale. A causa della differente metodologia adottata, riguardante il trattamento dei dati ("editing", interpolazione e filtraggio), le analisi euleriane ed anche per l'aggiunta nell'analisi di dati dell'anno 2003, i risultati ottenuti differiscono in parte rispetto a quelli di Zhurbas et al. [2002].

Nel capitolo 2 si possono avere informazioni sul tipo di drifter utilizzati e circa il trattamento dei dati, la loro distribuzione temporale e spaziale dei drifter mediante grafici delle statistiche e delle traiettorie. Nel capitolo 3 saranno presentati i risultati dell'analisi dal punto di vista euleriano, le modalità di determinazione della scala spaziale con la quale i dati sono stati

mediati, i campi di velocità e la variabilità attorno al campo medio, l'energia del campo medio e quella delle relative fluttuazioni, la posizione del cuore della Rim Current rispetto alla batimetria ed il tempo di residenza medio. Nel capitolo 4 saranno discussi i risultati ottenuti e le conclusioni a cui tali risultati ci hanno portato.

2. Dati e metodi

2.1 Strumenti e trattamento dei dati

Fra il 1999 e 2003 sono stati impiegati un totale di 53 drifter nel Mar Nero che hanno fornito 54 traiettorie con un totale di 24238 misure di velocità mediate ogni 6 ore. I drifter utilizzati appartengono al tipo XAN-3 (n°6) con catena di 10 termistori fin a 50 m della MetOcean, Canada, n° 37 del tipo SVP-B con una ancora di tipo "holey-sock" centrata ad una profondità nominale di 15 m, con sensore di pressione atmosferica e temperatura dell'aria, di cui n°4 americani della Naval Oceanographic Office (NAVO), e n°10 del tipo SVP con una ancora di tipo "holey-sock" centrata ad una profondità nominale di 15 m, di cui n°3 ucraini costruiti dalla Marlin di Sevastopol e n°7 americani costruiti dalla MetOcean. Tutti i galleggianti adottano il sistema satellitare ARGOS per la telemetria dei dati e la loro localizzazione, mediante il quale sono forniti i dati relativi a ciascuno di essi. Questo sistema calcola la posizione attraverso la misura dello spostamento Doppler del segnale a frequenza fissa mandato dal drifter.

Le posizioni di messa in mare sono rappresentate in figura 2, la scelta era dovuta al caso specifico, in particolare per monitorare particolari strutture in due modalità: a) mediante campagne oceanografiche volte a studi del mescolamento tra zona costiera e mare profondo, per opera di scienziati russi [Zatsepin et al., 2003; Motyzhev et al., 2000; Afanasyev et al., 2002], b) mediante "ship of opportunity", cioè sfruttando l'opportunità di lanciare a mare i galleggianti da navi di linea (figura 2).

Tutti i dati, compresi quelli della linea di costa e della batimetria, sono stati trasformati da gradi di longitudine e latitudine in distanze in chilometri rispetto ad un punto di coordinate 34.5° di longitudine e 43.5° di latitudine, situato circa nel baricentro del bacino.

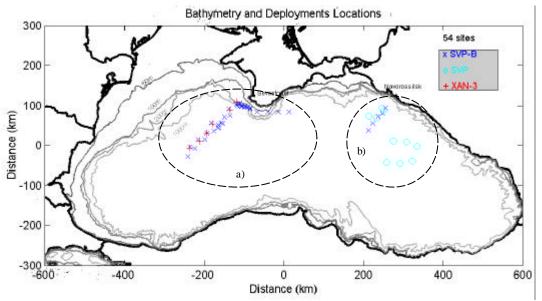


Figura 2. Posizioni di messa a mare dei drifter, differenti colori per tipo. a) rilasciati mediante "ship-ofopportunity", b) rilasciati durante campagne oceanografiche.

I dati di posizione e temperatura sono stati editati dagli "spike" sia mediante metodo automatico sia manualmente [Poulain, 2001], interpolati ogni 6 ore utilizzando il metodo di Krigging utilizzando un variogramma ricavato dai dati stessi [Hansen e Poulain, 1996], filtrati con un filtro passa basso a 36 ore per eliminare l'effetto delle correnti di marea, sesse e correnti inerziali, ed infine sono stati sotto campionati ogni 6 ore. Le velocità sono state calcolate mediante metodo delle differenze finite centrate dei valori di latitudine e di longitudine sotto campionati [Poulain, 2001]. Precedentemente al Krigging i dati, a livello "raw" (non ancora interpolati) sono stati tagliati alla fine e all'inizio, quando necessario, ed individuata la causa di fine operatività del drifter (recupero o vandalismi di pescatori, spiaggiamento, esaurimento batteria). Si è registrata la data, ora, posizione geografica di inizio dei primi dati buoni e fine di operatività del drifter ed i limiti di latitudine e longitudine di ciascuno. Tutte queste informazioni, assieme all'origine, al tipo e numero dei drifter utilizzati in questo studio, sono riassunti nelle tabella 1.

	C.	-	pr.		2	p.c																			20,000	8	-	27									23426.47500	duet pera			dend bed										
COMMENTS	lost term chain on 25,01,0000	lost term chain on 18/02/2002	lost term chain on 04,01/2002	lost term chain on 15/02/0000	lost term chain on 29-Jan-2002	lost term chain on 24/03/0000			lost through		lost drogue				lost drogue	no sensors	no sensors	no sensors			iniziare da 731 307 15689		tining a 73/183 19779		Title a 730475.05307	tew positions - thire a 730778 75108		tem positional/argue lost at 836.2	thire a 730818.71014		DOST GLOGUE		lost drogue				Finite 7.190.1 11.225 heature 1214.11574.23 Shire 7.24.26.4 TSB0	dai 28.08.0002, 12.00.00 Battary low - Sachanjo	OTATA		dal 12/C2/2003 4 48 00 bettery law - bad beng										
ARCOS PROGRAM	9800-NAVO	9800-NaVO	9500-NAVO	SECO-NAVO	9800-NAYO	SECO-MAYO	9800-NAVO	9800-NAYO	SECO-NOVO	9800-144VO	9800-NAVO	OVAN-0088	9800-NAVO	9800-NAVO	9800-NaVO	1827.005	1827 005	1527 005	1627 005	1827 005	1627 005	1627 005	1827 005	1627 005	1627 005	1828 003	1628 008	1630,005	1831 005	1627 006	900,000	187.003	1527.055	9800-NAVO	9800-NAVO			İ	300 May 0	1807.005	1627 005	1627 005	9B00-NAVO	9800-NAVO	9900-NAVO	9900-NAVO	9800-NAVO	SECU-NAVO	9800-N6V0	SASSI-NAVO	S000-Mayo
DIGITAL LINE	XXN-3	XAN.3	KAN-3	XXNL3	NAN-3	KAN-3	SVP-B	SVP-B	SVP-B	SVP-B	SAP-B	SYR-B	SVP-B	Svp-B	SVP-D	g/s	dys	94.50	SWP	dvs	Syp	SWP	dy's	Svo	SVP	SVP-B	8448	SVP-B	SVP-B	Sype	0.000	Syph	SYP.D	SVP-B	SVP-B	SYR-B	SVP-B	B-dAS	2000	SAD B	SAP-B	SVP-B	SVP-B	SAP-B	SYP.B	SVP-B	SAP-B	SYP.B	9.44.8 0.00.00	P-dAS	SYP-B
TYPEDEATH	pattery	bellery	unimavin	unknown	picked-up	bettery	singuis	picked-up	papunos	dh-paigid	unimown	grounded	unknown	grounded	grounded	unknown	unlangerin	unknown	unimawn	grounded	grounded	unimawn	uniquen	unistraven	unimown	anidng	graphic	unimown	singue	picked-up	distribution of	TUPLOON	dispersion	unimawn	grounded	picked-up	on-payool	LINDOWN	unandom	O PARTIE O	unimown	oliched-up	dn-paypid	groins	grounded	unknaven	grounded	grounded	picked-up	CONTRACTOR	grounded
MAXEON	33 483	32.304	32,799	30.081	31.890	35,098	41.344	41.177	32.234	34.845	44.538	33,324	164.14	40.826	40.670	38.357	30.356	30,308	28.113	37.850	61.845	28.894	37,400	37,166	28,201	X 867	33.974	34,000	E A	37.714	27.000	87.773	37,451	40.427	41.515	32.503	996'04	80.818	01 10	2000	32.468	956.19	33.441	33.224	33.433	33,366	38.030	20,238	36.663	345	33,056
mark Con	31.004	29,341	28.827	29,011	29.182	30.216	28.855	29.077	29,082	28.845	28.782	32,456	28.531	28.872	28,635	38.968	31.334	31,772	37,681	28.807	28.138	18,604	30.805	33,370	31,884	30.619	28.143	28,807	27.974	28.347	29,830	33 796	32.227	27.569	27.084	28.165	28,540	28.327	20.400	18 707	28.388	28,507	28.410	28.946	28.402	30.148	28.422	31,512	28.354	78,389	20,038
MAYEN	45119	44.132	44,741	14.124	43.590	43,402	44.892	\$3.830 \$3.830	64,359	44.700	45.046	100.00	154.45	H-028	64.630	49.300	600 10	44.000	43,038	3	44.778	43.528	45.077	£.88	(4,803	15161	46.188	E 78	1 2	£ 52	14 000	11830	64.343	44.830	44.563	14,280	14.894	18 18 18 18 18 18 18 18 18 18 18 18 18 1	65.543	44 000	1884	44.092	44.836	45.257	64,726	44.996	45.008	65,643	1871	1 2 E	64,865
MIN LA	44,081	42.705	41,811	41.378	42,589	42,385	41.012	40,981	41,935	41,485	40,941	44,418	41.331	41.041	41,363	41.583	42.813	42,545	42,642	43.682	40.942	43,404	44,088	43,829	42,478	43.744	42,988	41,545	41.188	41,686	71076	43.985	42,421	41,009	41,400	41,000	41.197	41,208	30000	41 667	41.007	41.186	41,836	42.172	41.421	43.829	41.276	44,307	41.250	41.182	61.18
	88 15	20.24	31.041	585 SX	29.162	35,098	28.730	40.000	31.304	34.818	35.878	32.640	28,937	40.787	30.00	37,306	31.853	30.004	37,691	28.028	38.187	38.616	31.266	89498	36.616	30.828	88.89	29.016	30.863	888	20,000	38.796	37.451	37.580	28.515	20.100	31.950	37.379	20170	9,00.0	30.89r	829.19	28.515	28.632	28.53	30.148	88 K	32.090	88.80	24.87	30.075
ž	44.034	42,705	42,061	42,008	43.225	42,842	41.376	4.347	42,044	41.968	44,948	45,361	42.274	41.114	43,633	41,583	42.912	43,580	42,642	44.407	40,943	43,529	44.838	44,638	43,002	45.181	43,108	41.545	41.532	41,688	7,0076	43.983	42,067	44.630	41,400	41,054	44,638	44,780	43433	40.000	41.077	42,507	41.836	42.172	41.421	44,018	42.108	45,310	41,289	42.146	41.170
CASITA	23/3/02 23:52	24/3/02/14:52	5/3/02 4.10	8,402,23.01	20/2/02 17,15	30/3/02 22/36	298,03 0.15	8.B.02.23.38	7/2/02/16:33	15/2/02 4.25	13/6/02/3/49	7/2/02/9.25	S/B/02 1.39	275,002,3,59	22/102/700	13,00 11.37	31,12,00,15,47	10,000,09	370/890.27	12/2/02/5/35	2,802,15.46	34,049,11,53	31 0.002 10.41	11/11/01 22:22	142,00 4,20	301/0/00 7.27	18/12/00/13/51	15/12/00/16/29	19/1/01 5.20	24/12/01/8.26	3001113.02 40H2M112.02	1401.015.06	22022240	8/9/02 3.23	17/5/08 18:50	24/4/02 23/08	19/8/02 23.28	Tuesco 14.40	24/20/20/10/20	18/4/08/18/20	25/2/03 1.22	4,400 10.44	2,400 11.07	2/8/09 15.01	1,809 22.36	230,003 14,34	20/8/09 11.43	20/2/03 18,06	245,039.37	5,803,12,54	18/4/03/6/20
100	33 007	32.258	32,798	30,000	34,890	31,584	30.440	34.828	32,234	32,775	32,639	30.00	34,529	32,092	34.577	37,892	38,483	30.330	38.102	37.850	37,806	38.544	37.419	37.166	37.927	N 80	388	34,000	888	37.811	20,000	37.712	37,168	20.053	32,807	32,503	32.328	20.02	97.50	20 440	32,466	32.543	20.44	30,108	30,178	30.265	88.88	12 E	2 2 2 2	20.10	200.00
M	44,473	43.980	44.291	43.748	43.587	43.402	44.320	43,603	43.888	44.313	44.128	44,419	43.219	43.749	43,423	43.071	43.081	43,520	43,039	44.232	44.289	43,404	44,088	44.128	43,657	44.250	44.250	44.290	44.250	44,182	49.670	44.302	43,609	44.379	44.157	43,876	43806	43.810	43,090	48880	43.886	43.897	44.329	44.443	44,374	44.353	44.349	44,355	44.383	46784	46,434
DEL COMMENT	23/12/01 5.10	25/12/01 8.04	23/12/DI 5:10	25 H2/0H 8.08	25/12/01 B.08	25/12/01 15.47	19/12/01 14:48	25/12/01 10:38	26 HZ01 8.55	22/12/01 0.00	23/12/01 5.11	23/12/01/11	34,0217,41	2502/01 8.09	25012/01 15.47	28/8/99 15:35	29,000,01.12	28/8/89 2.50	28/9/89 1.12	2200,001 15.17	24/10/01 4.48	28/8/89 1.12	23/10/01 3.51	24/10/01 4:48	28/4/89 7.08	6.HOXID 19.29	7/10/00 3.54	7/10/00 0.46	64000 22.32	22/10/01 15:18	201001 22.34	2200011518	23/1/82 2:00	34,029.33	34,0214,21	3000214.21	30,0219,22	SW021428	000000000000000000000000000000000000000	80081400	620314.16	6/2/03/14/16	14/3/03 11.20	15/0/03 1.58	14/3/03 9.41	14/3/03 11/20	14/3/03/11/20	140,000,15.13	140,03 9,40	14680311.21	14000315.13
THE BOOK	E11344.4gt	tot 1392,det	lof 1402,old:	Er1410.dat	bi1442.det	lof 143B olet	bri 83d0.det	lor 6301 plac	lof 6302,olet	brt 8333.clat	br18334,dat	at 5335,det	br 8335.olst	to16336.08C	tof 6307,det	bi 7430.dat	bt 7431 Jagr	tof 2432,clet	lof 7483.olst	b17484,00£	bi 7485,det	lof 7485 old:	bt 7487.dat	bt7490.det	Jol 7491 Jobs	628378.det	528377.dk	lo28378.olet	628379.dat	bcscarr.com	D0004908	ECST-51 OF	b33362.clst	b34829.det	E/S4830./4gt	b34501.det	logd8d2.olet	POSTER S AND	NOTE AND AND	POSSOD NOT	b05501.det	lo38502.olet	540419.dst	b40420.dat	1040421.086	540422.dst	b40423.dat	D40424.08	540425.det	EM0426.080	540427,080
2	134	11382	11402	11410	11412	11438	16330	18331	16392	18333	18304	16335	18335	1638	16337	1743D	17431	17432	12483	17484	17485	17485	17487	17480	12481	28378	28377	28378	28379	33347	00000	33.901	33362	34829	34830	34531	34802	34833	30000	95500	35501	35502	40419	40420	40421	40422	40423	40424	40425	40425	40427

Tabella 1.

2.2 Distribuzione temporale dei dati

Prendendo in considerazione l'intera popolazione di drifter con dati che vanno dal 28 settembre 1999 al 29 agosto del 2003, si ha per questi, una "mean half-life" di 92 giorni, cioè più del doppio rispetto al Mar Adriatico e circa 4 volte meno rispetto a zone oceaniche (più di 400 giorni) [Poulain, 2001]. Il tempo di vita massimo è di circa 600 giorni. Per "mean half-life" si intende quanti giorni dopo la messa in acqua si hanno il 50% di drifter ancora operativi. E' importante notare che circa la metà dei drifter hanno smesso di trasmettere perché sono stati recuperati o sono finiti sulla costa.

In figura 3a è mostrata la distribuzione temporale della popolazione con un totale di 16 drifter per anno; pochi sono i dati nel 1999, 2000 e 2001 rispetto a 2002 e 2003 in cui abbiamo un massimo di 18 drifter nei mesi di dicembre e gennaio 2002. Considerando i differenti tipi di drifter SVP, SVP-B e XAN-3 si ha che questi hanno una mean half-life rispettivamente di 95, 84, 91 giorni. Le distribuzioni di ciascuno sono illustrate in figura 4a,b,c.

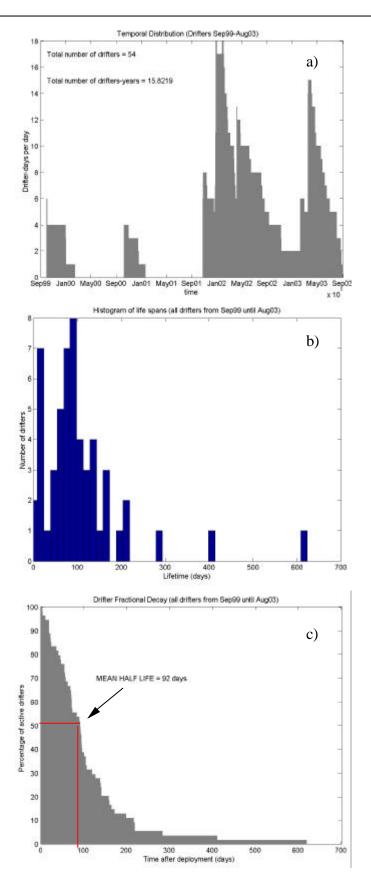


Figura 3. a) Distribuzione temporale dei dati dei drifter; b) Istogramma numero di drifter per tempo di vita; c)

Percentuale di drifter attivi dopo la messa in acqua.

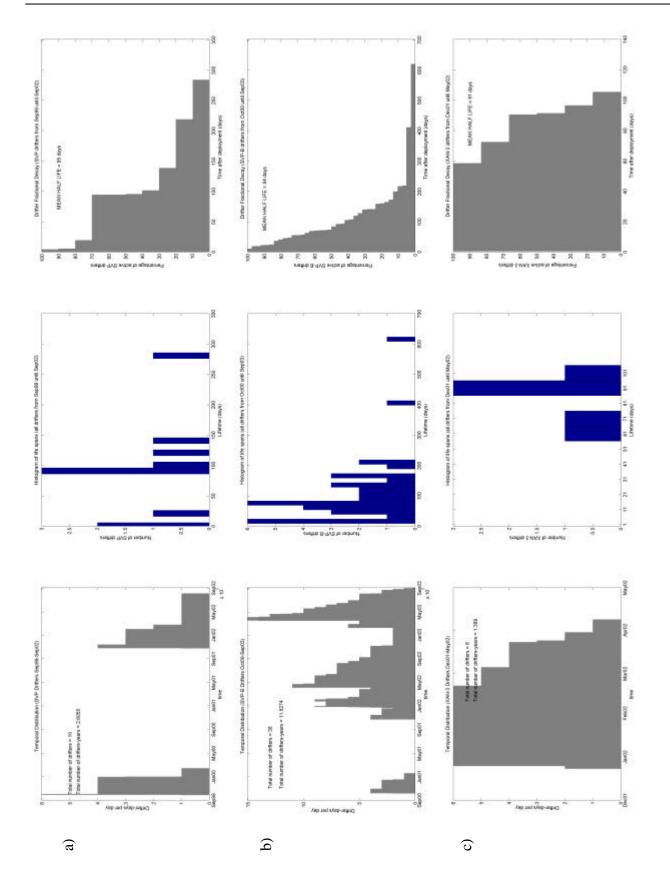


Figura 4. Distribuzione temporale dei dati, Istogramma numero di drifter per tempo di vita, Percentuale di drifter attivi dopo la messa in acqua, mean half life: a)SVP b)SVP-B c) XAN-3.

2.3 Distribuzione spaziale dei dati

Nel grafico seguente (figura 5) sono mostrate l'insieme di traiettorie di tutti i drifter, colorate per tipo, evidenzianti una buona copertura spaziale dell'intero bacino, tranne che per una zona a nord ovest, a centro e centro/est bacino. Nella figura 6 sono rappresentate le stesse traiettorie ma interpolate e filtrate, mentre nelle figure 7-11 abbiamo le traiettorie per ogni anno; la quantità di drifter attivi in ciascuno è rappresentato nel diagramma di figura 12.

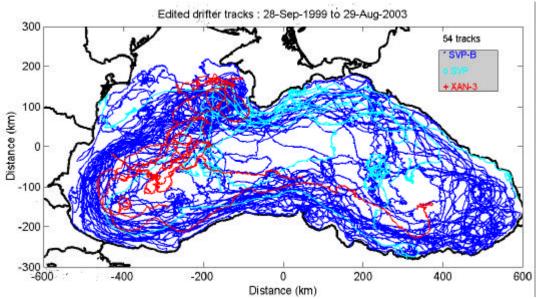


Figura 5. Grafico di tutte le traiettorie dei drifter considerate nel presente studio dal 1999 al 2003.

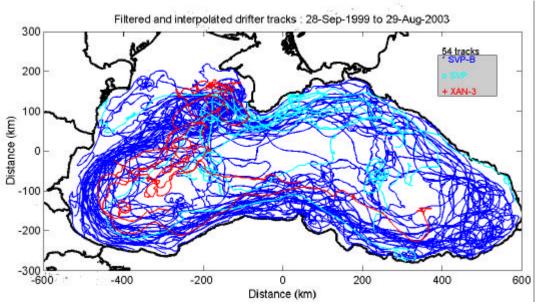


Figura 6. Grafico di tutte le traiettorie filtrate ed interpolate.

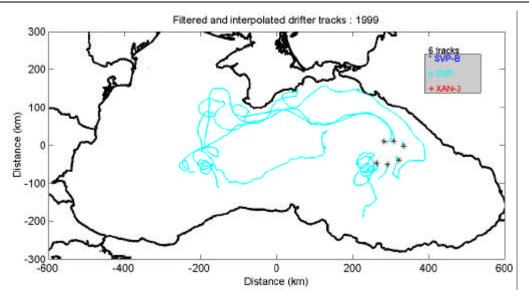


Figura 7. Grafico di tutte le traiettorie filtrate ed interpolate nell'anno 1999 (* prima posizione dopo il rilascio).

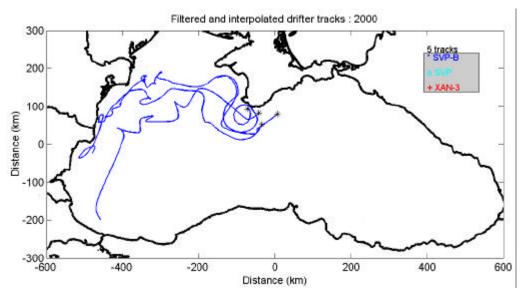


Figura 8. Grafico di tutte le traiettorie filtrate ed interpolate nell'anno 2000 (* prima posizione dopo il rilascio).

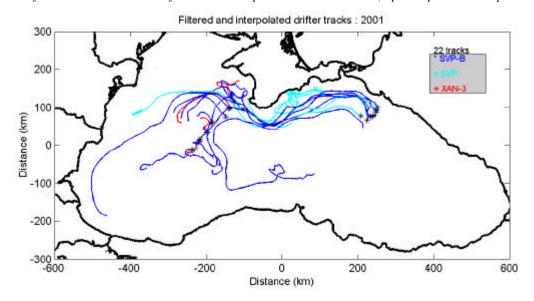


Figura 9. Grafico di tutte le traiettorie filtrate ed interpolate nell'anno 2001 (* prima posizione dopo il rilascio).

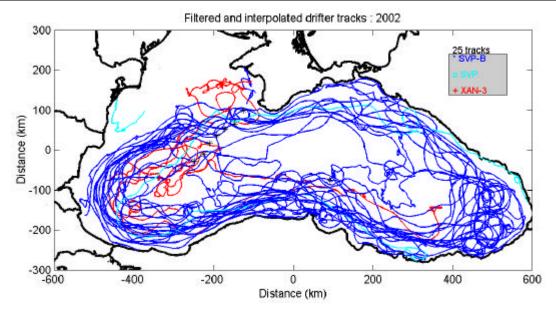


Figura 10. Grafico di tutte le traiettorie filtrate ed interpolate nell'anno 2002 (* prima posizione dopo il rilascio).

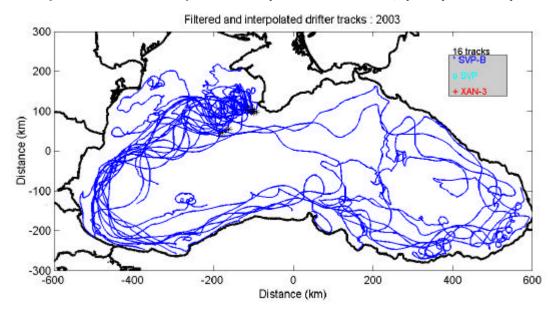


Figura 11. Grafico di tutte le traiettorie filtrate ed interpolate nell'anno 2003 (* prima posizione dopo il rilascio).

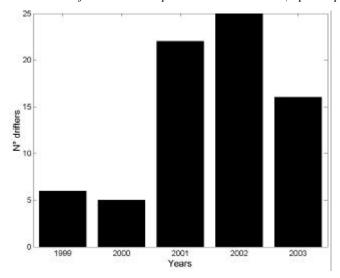


Figura 12. Diagramma della quantità di drifter attivi per ciascun anno.

Le traiettorie confermano la presenza di una circolazione ciclonica attorno al bacino. Tuttavia i drifter non stazionano sempre all'interno della Rim Current, ma sono spesso catturati da vortici (mesoscale eddies) che li trasferiscono in zone di mare aperto, più centrali rispetto al bacino, trattenendoli anche per molto tempo. In figura 13 mostriamo alcuni vortici e, per ciascuno, la data in cui il drifter viene catturato in esso, in blu; la data di uscita, in arancione, se il drifter successivamente ha proseguito nel suo cammino e in rosso se quella è stata la sua ultima posizione.

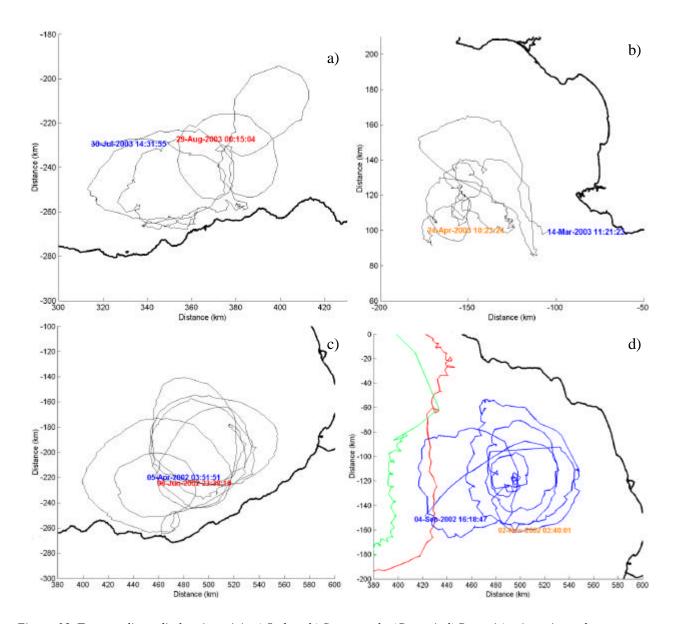


Figura 13. Tracce editate di alcuni vortici: a) Sud, est b) Sevastopol, c)Batumi ,d) Batumi (traiettorie verde e rossa della Rim Current, traiettoria blu del vortice nel medesimo periodo).

La distribuzione geografica delle correnti superficiali lente, medie e veloci può essere individuata ordinando le velocità ricavate dai dati interpolati in tre intervalli: minori di 10 cm/s, comprese tra 10 e 40 cm/s e maggiori di 40 cm/s e creando grafici che illustrano tali segmenti corrispondenti a questi intervalli di velocità (figure 14 e 15).

I segmenti con velocità più basse (<10 cm/s) presentano una maggior densità nelle zone centrali rispetto ai bacini est e ovest, appena fuori Sevastopol e in zona di piattaforma fuori la foce del Danubio. Le velocità intermedie fanno parte della maggior parte delle strutture, facenti parte la circolazione superficiale, che si possono individuare dai dati. I tratti più veloci (>40 cm/s) sono situati prevalentemente lungo la zona della "Rim Current", si può notare che anche alcune strutture di mesoscala sono interessate da tali velocità, ad est di fronte alla costa della Georgia, nel vortice Batumi, a sud della penisola di Crimea e fuori Sevastopol, vortice Sevastopol (figure 14-15). La velocità massima si osserva in un punto a sud del bacino (vedere in figura 14) e corrispondente a 95.3 cm/s.

3. Statistiche euleriane

3.1 Scala spaziale

Per rappresentare la corrente superficiale del bacino che è somma di una corrente media costante ed un termine che ne rappresenta le fluttuazioni nel tempo e nello spazio (a piccola scala), occorre scegliere un'adeguata scala spaziale; si è adottato il criterio definito da Poulain [2001]. Essendo la velocità massima osservata di 95.3 cm/s, il corrispondente spostamento in 6 ore è dato da: $0.00095 \times 6 \times 3600 = 20.5 \ km$. Pertanto si pensa ragionevole considerare un cerchio di diametro di circa 40 km, in modo tale da avere almeno 1 o 2 osservazioni dei drifter più veloci al suo interno. Successivamente abbiamo calcolato l'energia cinetica delle fluttuazioni per unità di massa delle fluttuazioni (EKE) e l'energia cinetica della corrente media per unità di massa (MKE) in cerchi di raggio decrescente, da un unico disco di 600 km di raggio che include l'intero Mar Nero a diversi di 10 km (figura 16).

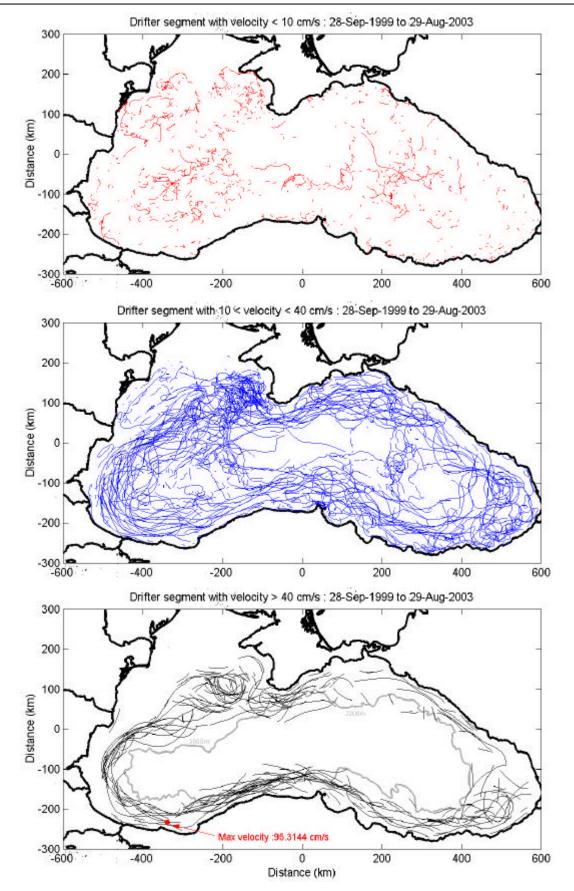


Figura 14. Segmenti di traiettorie corrispondenti a: rosso) velocità < 10 cm/s, b: blu) velocità comprese tra 10 e 40 cm/s, c: nero) velocità > 40 cm/s, in grigio è rappresentata la batimetria di 2000 m.

Figura 15. Distribuzione spaziale di segmenti di differenti velocità (nero, velocità maggiori di 40 cm/s; blu, comprese tra 10 e 40 cm/s; e rosso, minori di 10 cm/s). Nelle due figure sotto sono evidenziati particolari strutture a vortici con velocità >40 cm/sec

Queste grandezze sono definite dalle seguenti equazioni [Poulain, 2001]:

$$MKE = \frac{1}{2} \left(\left\langle u_1 \right\rangle^2_E + \left\langle u_2 \right\rangle^2_E \right) \tag{1}$$

$$EKE = \frac{1}{2} \left\langle \left\langle u_1' u_1' \right\rangle_E + \left\langle u_2' u_2' \right\rangle_E \right) \tag{2}$$

dove $\langle u_i \rangle_E$ è la corrente media euleriana della componente u_i , con i=1 (componente est-ovest) e i=2 (componente nord-sud); $\langle u_i'u_i' \rangle_E$ è la matrice di covarianza e $u_i'=u_i-\langle u_i \rangle_E$, è la componente residua di u_i della velocità. In figura 16 le barre di errore, corrispondenti alla deviazione standard, danno indicazione circa la variabilità nei dati di energia calcolata, che aumenta al diminuire del raggio.

Abbiamo scelto di calcolare le statistiche euleriane in cerchi di raggio 25 km perché questo rappresenta un buon compromesso tra quantità di punti all'interno dei cerchi e risoluzione spaziale. La media su tutti i cerchi della MKE è circa uguale al valore medio della EKE e

corrispondente a 170 cm²s⁻². Il valore di tali statistiche, calcolate in questo studio, è quindi specifico e solo per una scala spaziale di 50 km. Dopo aver definito la scala spaziale, nel computo del campo medio e della sua variabilità, non sono stati considerati i cerchi che avevano meno di 5 osservazioni (figura 18b).

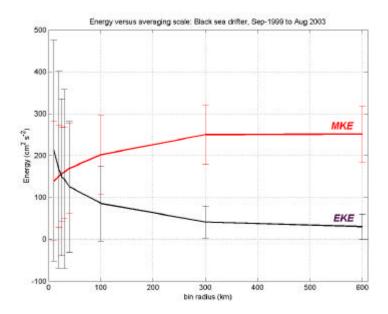


Figura 16. Energia cinetica della corrente media (MKE) e Eddy kinetic energy (EKE) mediate su tutti i cerchi del intero bacino, per ogni taglia di disco da 600 a 10 km.

La quantità di osservazioni per cerchio di 25 km di raggio tende a crescere fino ad un massimo del 4.7% circa a 115 osservazioni , significa che il 4.7% di cerchi ha 115 osservazioni; per maggiori quantità di osservazioni le percentuali diminuiscono notevolmente, meno del 1% per 190 osservazioni (figura 17). La maggior informazione si riscontra nella zona di mare presso Sevastopol e procedendo verso sud ovest (figura 18); ciò è in parte dovuto al fatto che molti drifter sono stati messi a mare in questa zona, ma anche per la presenza appunto del vortice di Sevastopol, il quale tende a intrappolare i drifter (si notano infatti basse velocità in figura 7a). Vi sono molte osservazioni (circa 250) anche in centro est bacino ove è presente un'intensa attività di mesoscala (Vortice Est; figura 18).

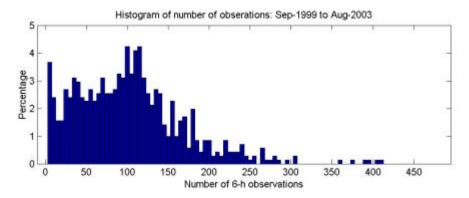


Figura 17. Istogramma della quantità di osservazioni per cerchio.

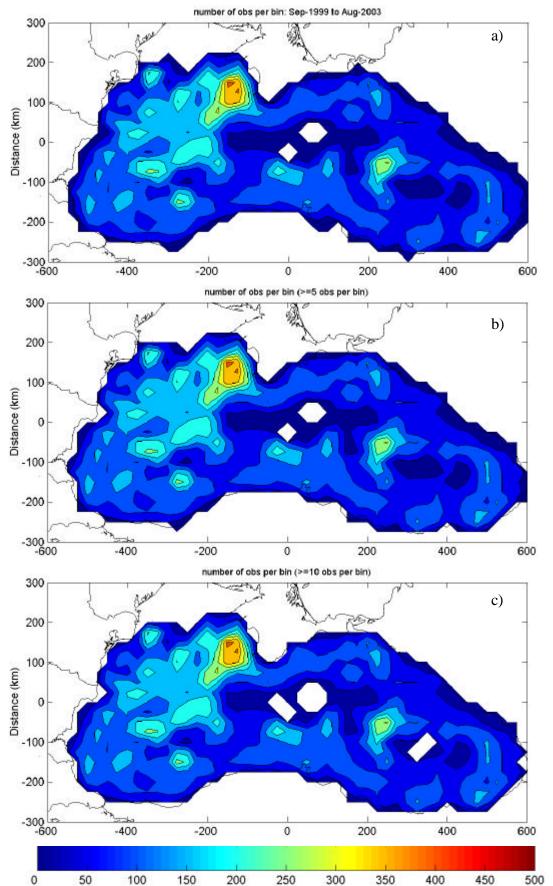


Figura 18. Distribuzione della quantità totale di osservazioni per cerchio(a), con più di 5 osservazioni per cerchio (b), e con più di 10 osservazioni per cerchio (c).

3.2 Campi di velocità media e variabilità

La mappa del campo di velocità media ci rivela alcune delle principali caratteristiche della circolazione superficiale del Mar Nero: circolazione ciclonica che segue il perimetro del bacino e vortici sia a centro est sia ovest del bacino, e le diramazioni della Rim Current a nord-ovest passata la punta di Crimea. I valori più elevati d'energia cinetica del campo di velocità media li troviamo lungo la costa della Turchia, (valore massimo 1000 cm²s²), in generale lungo la costa in zone in cui è presente la Rim Current, sotto Crimea (figura 19) e nella parte occidentale del vortice Batumi. Interessante è notare che la MKE è elevata lungo la costa turca ad ovest di Sinop, poi procedendo verso est diminuisce in valore per lasciar posto ad un aumento di variabilità riscontrabile per alti valori in EKE, dovuta ad una decelerazione del campo di velocità media. Basse energie medie le individuiamo in zone centrali dei bacini est e ovest, lungo costa della Georgia, di fronte e a nord ovest nella zona di piattaforma e fuori Sevastopol.

Dall'osservazione del grafico delle ellissi di varianza [Emery and Thomson, 2001], le quali indicano le direzioni principali della variabilità attorno al campo medio di corrente, e i cui rispettivi assi indicano gli errori dei valori medi (figura 20a), possiamo individuare due zone ad elevata varianza: una ad est e una di fronte Sevastopol, in cui le ellissi tendono ad essere simili a cerchi, indicando una variabilità non preferenziale in direzione, vi sono anche zone a bassa velocità media e osservando il contour dell'energia cinetica della varianza vediamo che queste sono zone, corrispondenti ai vortici Batumi e Sevastopol, hanno elevata EKE (451-501 cm²s⁻²) (figura 20b). Un'elevata energia la troviamo anche lungo la costa turca di fronte a Samsun e tra Suchumi e Novorosilsk dove però, diversamente dalle zone precedentemente descritte, le ellissi sono allungate ed hanno un orientamento parallelo alla costa, quindi con una variabilità preferenziale in direzione; entrambe queste zone sono zone di decelerazione del campo di corrente medio.

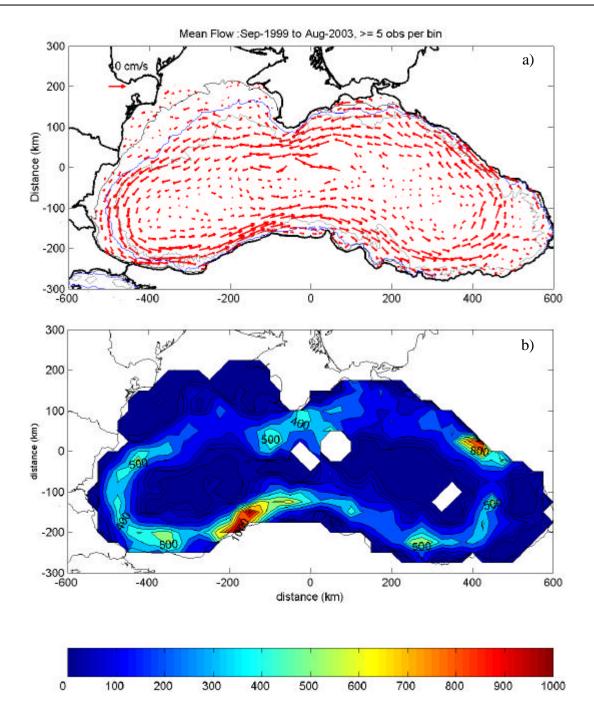


Figura 19. a) Mappa del campo di velocità media, escludendo cerchi con meno di 5 osservazioni indipendenti; b)

Energia cinetica del campo di velocità media per unità di massa.

Figura 20. a) Mappa delle ellissi di varianza del campo di velocità escludendo cerchi con meno di 5 osservazioni; b) Eddy Kinetic energy per unità di massa.

3.3 Stagionalità

Al fine di indagare circa l'eventuale stagionalità si è inizialmente analizzato l'andamento mensile dell'energia cinetica su tutto il bacino (figura 21). Minimi in energia cinetica si riscontrano in dicembre; l'energia va aumentando durante l'inverno e parte della primavera, fino ad un massimo in aprile, in seguito si ha una diminuzione durante parte della primavera, fino

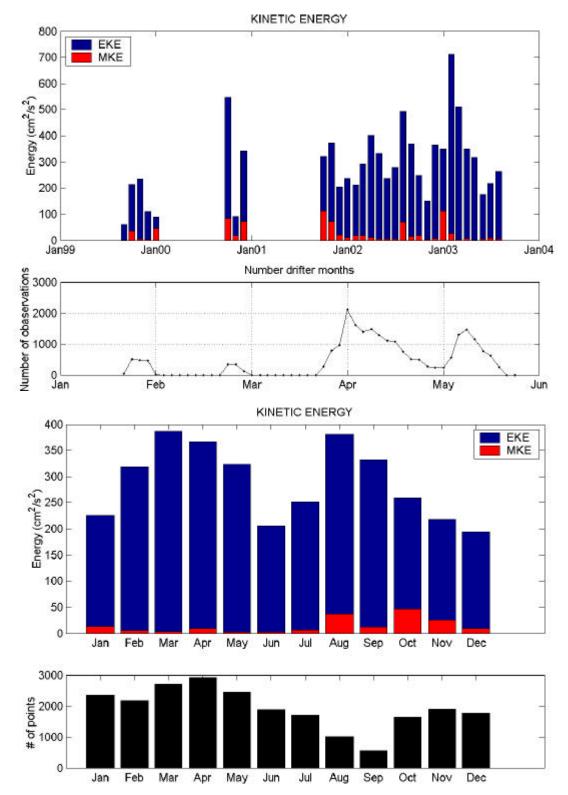


Figura 21. a) Diagramma a barre di MKE & EKE per mese; b) Diagramma a barre di MKE & EKE per mese dell'anno.

ad un minimo in giugno, dopodiché l'energia torna ad aumentare in estate fino ad un massimo in agosto, per poi ridiscendere nei valori durante l'autunno (Figura 21b). L'elevata energia in estate non è un risultato significativo poiché essa è una stagione sottocampionata, e per questo

abbiamo, inoltre, una troppo elevata MKE, che ci aspettiamo bassa, per ragioni insite nella sua definizione, a causa della forma quasi chiusa del Mar Nero e della prevalenza di una circolazione media ciclonica superficiale nel bacino intero. Le stagioni sono così definite: estate (giugno-luglio-agosto), autunno (settembre-ottobre-novembre), inverno (dicembre-gennaio-febbraio) e primavera (marzo-aprile-maggio), per ognuna è stata calcolata l'energia e la quantità d'osservazioni che l'intera base di dati comprende per ciascuna (Figura 22).

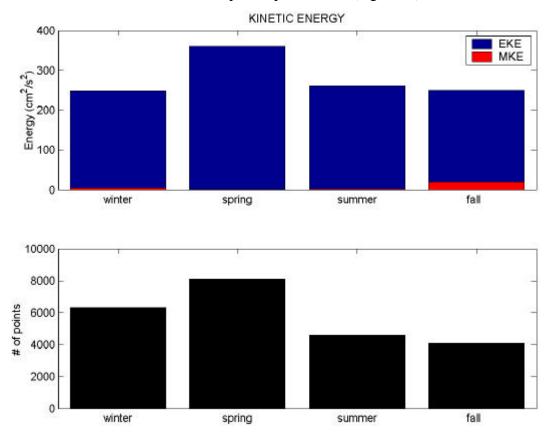


Figura 22. Diagramma a barre di MKE & EKE per stagione e diagramma della quantità di dati per stagione

In primavera si ha abbondanza d'osservazioni, molte meno se ne riscontrano in estate ed autunno; dall'istogramma dell'energia si nota maggior energia in primavera minore in autunno e inverno.

Le traiettorie sono state quindi separate per le differenti stagioni e calcolate in ognuna le statistiche euleriane (figure 23-27). Durante la primavera, lungo la costa turca, di fronte alla Crimea e più ad ovest a circa –200km di longitudine e circa 100 km di latitudine (in distanza relativa rispetto al centro del bacino), si ha il valore più elevato di MKE, circa 1000 cm²/s² (figura 26), questa zona non è rappresentata in autunno dove in questa stagione è ben visibile il vortice Batumi ad est (figura 24). Lungo la costa turca, anche nei mesi estivi, si ha un valore

MKE piuttosto elevato paragonabile a quelli riscontrati nella zona in inverno e in primavera. L'EKE mostra valori massimi primaverili di fronte a Sevastopol, alla costa della Georgia e della Turchia. Dal grafico delle ellissi di varianza e dell'EKE si nota un'elevata variabilità, univoca in direzione, a sud-ovest (Stretto del Bosforo); così come si nota un cambiamento, nell'orientazione e nella forma delle ellissi, nel passare dalla primavera all'estate (vedere riquadri in figura 25).

A questo punto l'analisi è stata ristretta scegliendo i cerchi che hanno almeno 5 osservazioni al loro interno e che rappresentano dati per tutte 4 le stagioni (figura 23), in modo da poter evidenziare risultati delle relative statistiche euleriane, dove si ha rispettivamente per quelle zone, il campo di velocità media (figura 28), la varianza del campo di velocità media rappresentata dal grafico ad ellissi (figura 29), la MKE e infine l'EKE di fronte a Sevastopol (figura 30-31). Proprio in questa zona sembra che la varianza nel campo di velocità media evolva attraverso un accrescimento invernale, con un massimo in primavera, un cambiamento in orientazione in estate ed un aumento, un po' più a sud rispetto a Sevastopol, durante i mesi autunnali (figura 29). Infatti, i valori più elevati MKE si registrano in inverno ma soprattutto in primavera (900-1000 cm² s-²), minori in estate ed autunno. In primavera anche l'EKE è più forte, ma in estate essa è più intensa rispetto ai valori dei mesi invernali (figure 30 e 31).

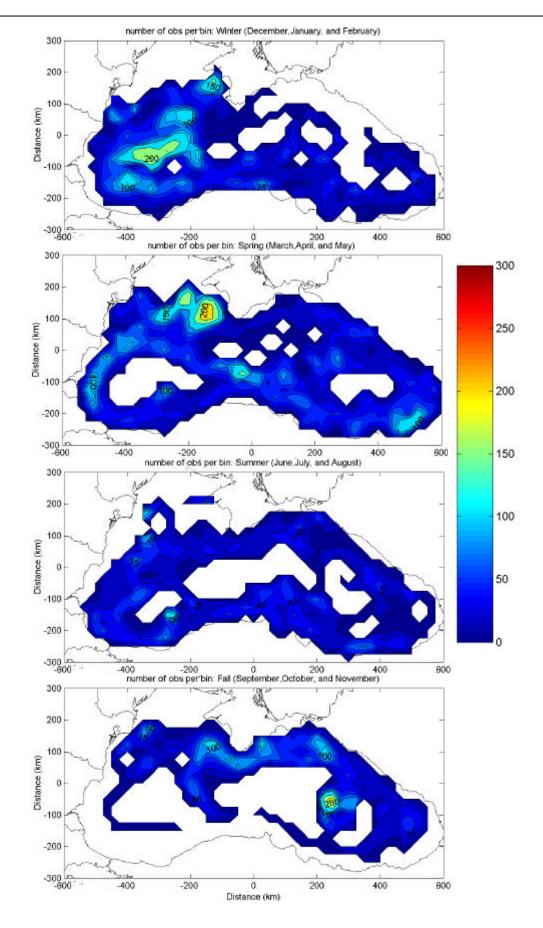


Figura 23. Distribuzione della quantità totale di osservazioni per stagioni.

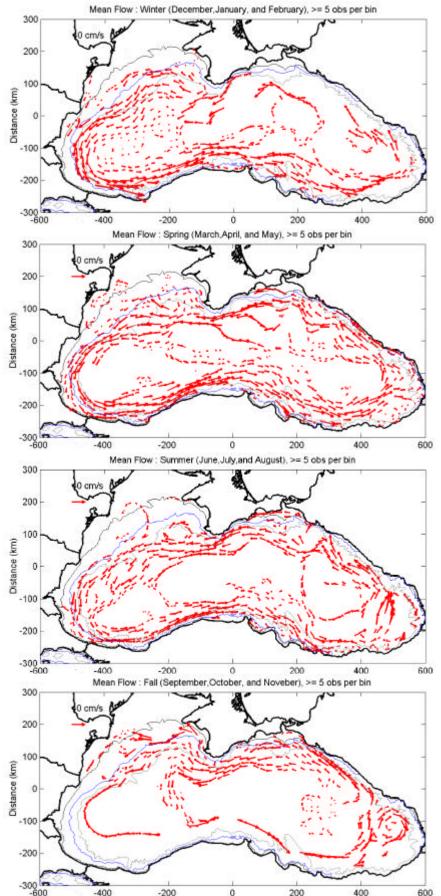


Figura 24. Mappe stagionali del campo medio in cerchi di 25 km di raggio su grigliato con risoluzione 25km, sono stati omessi dati in cerchi con meno di 5 osservazioni.

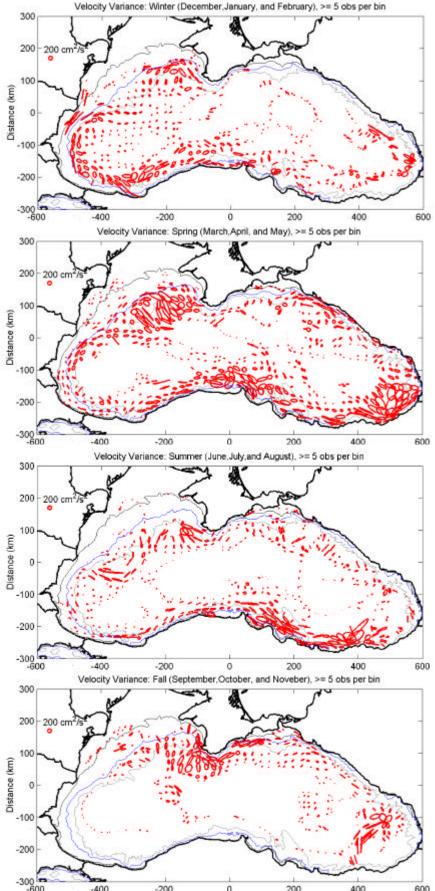


Figura 25. Mappe stagionali delle ellissi di varianza del campo medio in cerchi di 25 km di diametro su grigliato con risoluzione 25km, sono stati omessi dati in cerchi con meno di 5 osservazioni.

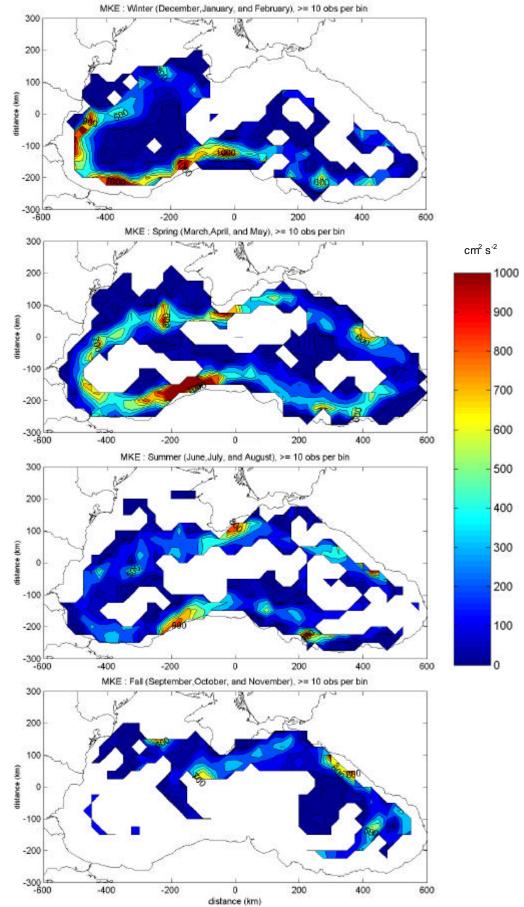


Figura 26. Energia cinetica del campo di velocità media (MKE) per stagioni.

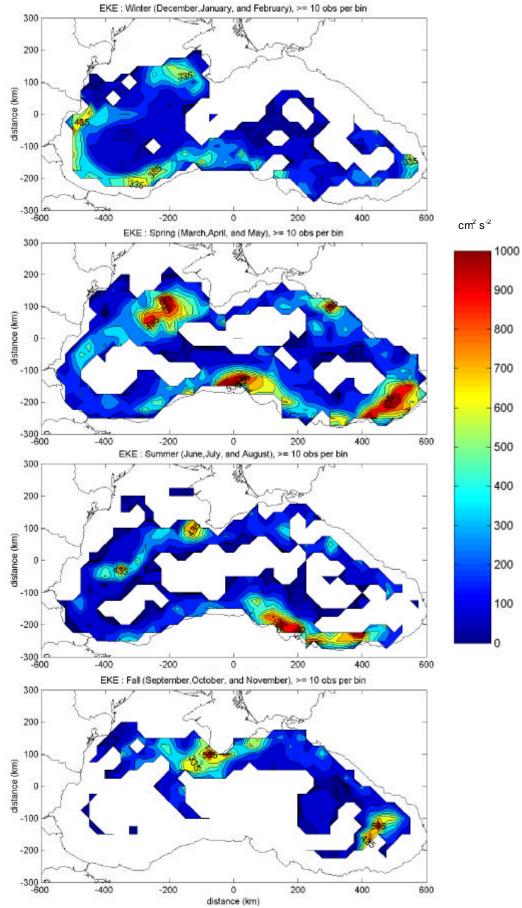


Figura 27. Eddy Kinetic energy (EKE) per stagioni

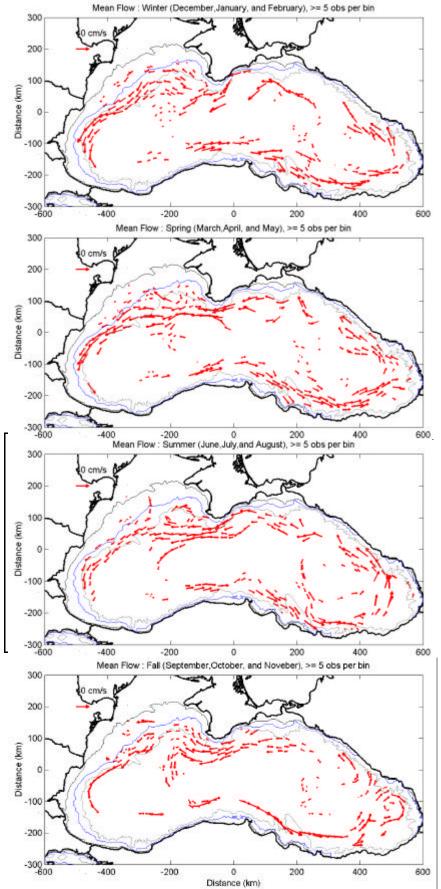


Figura 28. Mappe stagionali del campo medio in cerchi contenenti osservazioni per tutte le stagioni, non sono stai considerati cerchi con meno di 5 osservazioni

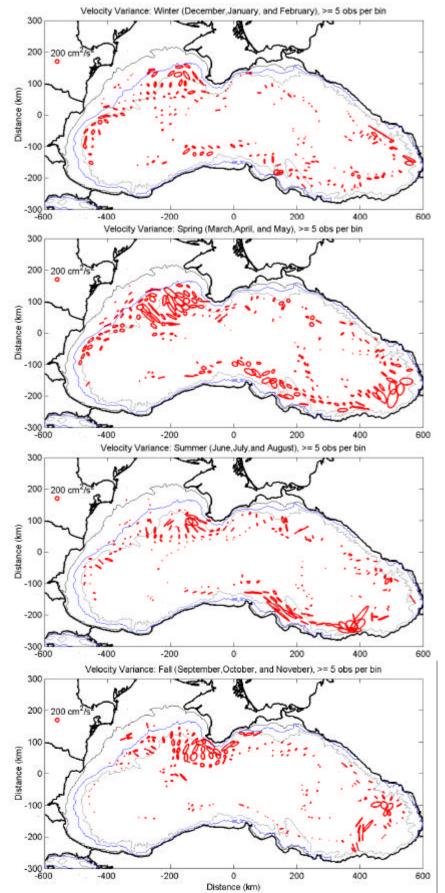


Figura 29. Mappe stagionali della varianza del campo medio in cerchi di 25 km di raggio su grigliato con risoluzione 25 km, sono stati omessi dati in cerchi con meno di 5 osservazioni.

Figura 30. Energia cinetica del campo di velocità media (MKE) per stagioni nel nord ovest del Mar Nero.

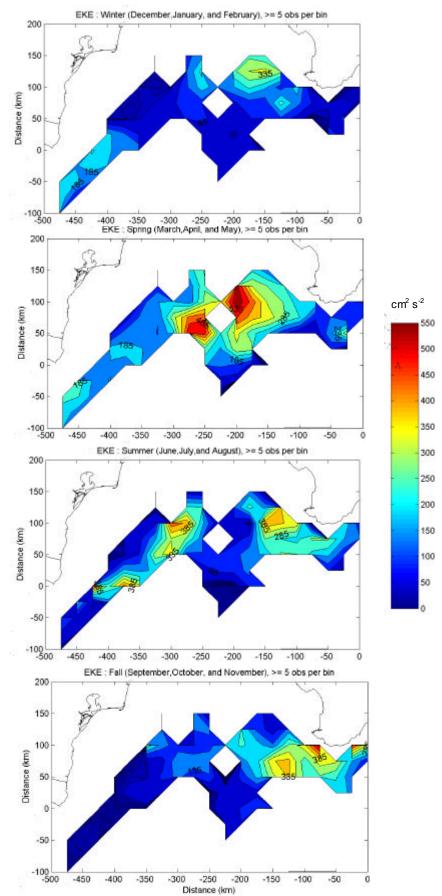


Figura 31. Eddy Kinetic energy (EKE) per stagioni nel nord ovest del Mar Nero.

3.4 Tempo di residenza

Un parametro di utilità pratica nella quantificazione della velocità di dispersione di un possibile inquinante immesso in un bacino, di indicazione riguardo al grado di mescolamento delle acque superficiali, utile nello studio dell'avvezione e dispersione di traccianti biogeochimici e specie animali, è il tempo di residenza medio. Il tempo di residenza è definito in Poulain et al. [1996] come l'arco temporale in cui un drifter sosta in un'area a partire da quando esso entra in essa. Calcolato per ogni galleggiante, in un'area specifica, si ha il tempo di residenza medio nella regione i,j:

$$TR(i,j) = \frac{\sum_{1}^{n} (t_f - t_i)}{n(i,j)}$$

dove, t_f è il tempo dell'ultima posizione in cui il drifter si trova ancora nell'area i,j prima di uscirne, t_i è il tempo della prima posizione del drifter all'interno dell'area i,j dopo esservi entrato e n(i,j) è il numero di segmenti di traiettorie nella superficie considerata. Il tempo medio di residenza è inversamente proporzionale alla corrente media ed anche ai tassi di diffusione [Poulain et al., 1996]. I massimi tempi di residenza per cerchio di 25 km di raggio (figura 32c) si trovano nelle regioni centrali dei due sotto bacini: 22.75, 27 gg. a ovest e 13.75 gg. ad est, a centro bacino risulta essere di 28.75 gg., inoltre a nord, in un canyon presso la zona di foce del Danubio è di 38.25 gg.. In generale, nella zona di piattaforma, le medie dei tempi di residenza variano attorno ai 5-6 gg. (figura 32a) con massimi di 22 gg. e 14.5 gg. di fronte a Sevastopol; si hanno tempi di residenza elevati anche nella zona dove si verifica il vortice Bathumi, a est (9-10.5 gg).

In media, all'interno dell'anello che circonda il perimetro del bacino di dominio della Rim Current, il tempo di residenza per cerchio è 1-2 gg. con deboli variazioni di meno di 1 giorno (figura 32b). Questa cintura di norma coinvolge la superficie marina sovrastante la scarpata continentale.

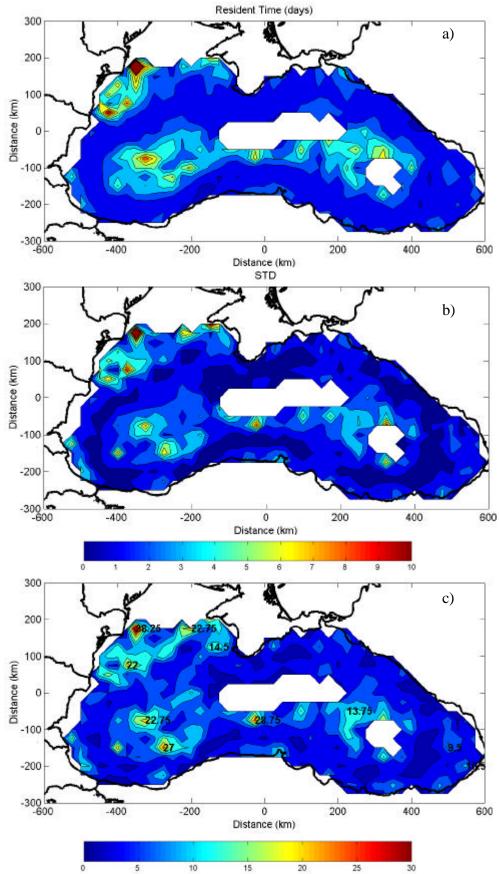


Figura 32. a) Tempo di residenza medio in cerchi di 25 km di raggio; b) deviazione standard (giorni) del tempo di residenza; c) tempo di residenza massimo in ogni cerchio (giorni).

3.5 Relazione tra corrente e batimetria

Il Mar Nero ha una scarpata continentale che generalmente inizia alla batimetria dei 150-200 m e finisce a circa 1900-2000 m di profondità. In figura 33a mostriamo proprio l'istogramma della batimetria del Mar Nero in intervalli di 100 m, utilizzando dati con una risoluzione di 2'x 2', in cui si nota per abbondanza di punti, una piattaforma variabile da 0 a 100-200 m, una scarpata continentale, per riduzione decisa della quantità di dati, da 100-200 m a 1800-1900 m ed una piana abissale a circa 1900-2200 m di profondità; pochi punti a profondità >2200 m. Abbiamo considerato il modulo delle velocità dei drifter rispetto alla batimetria sottostante la loro posizione geografica, la media di tali velocità e la quantità di osservazioni per ciascuna profondità, anche normalizzando rispetto all'area di superficie marina che ogni isobata occupa in sezione (figura 33b, c, d). In media le velocità sono più elevate a profondità maggiori di 200 m e minori di circa 1800 m; oltre a ciò si rileva, nelle regioni sovrastanti, per la minor estensione di tali aree, una esigua quantità di osservazioni a queste profondità. Limitata informazione si ha per profondità inferiori a 100 m, pochi infatti sono i drifter che hanno attraversato la zona a ridotta profondità che è la piattaforma continentale a nord (NWS). A riprova di quanto si è affermato circa la velocità media, anche l'energia, sia la EKE, sia la MKE, hanno un andamento a "campana" (figura 33e) con massimi livelli energetici per profondità comprese tra i 400-1800 m. La MKE, vicina a 0, per quanto gia affermato, a causa della forma quasi chiusa del Mar Nero e della prevalenza di una circolazione media ciclonica superficiale in tutto il bacino. Sotto i 2200 m si ha un aumento di energia, ma non è significativo, è dovuto alla esigua quantità di punti, corrispondenti a fosse presenti nel bacino, alcune situate in corrispondenza di settori ad elevata energia.

Si è calcolata la distribuzione delle profondità relative alle posizioni di messa in acqua dei drifter anche normalizzando le osservazioni rispetto all'area che ciascuna profondità occupa nel bacino, (figura 34a, b); quasi tutti i galleggianti sono stati messi in zone di scarpata continentale o di piana abissale. Dopo il rilascio, la disposizione delle profondità relative alle traiettorie che i drifter compiono, divisa in intervalli di 10 giorni e calcolata fino a 100 giorni dopo la messa a mare, varia (figure 35), e dai grafici delle osservazioni normalizzate (figure 36), si evince che la distribuzione propende a farsi abbastanza uniforme lungo più o meno l'intera batimetria, cioè i drifter non seguono generalmente le isobate.

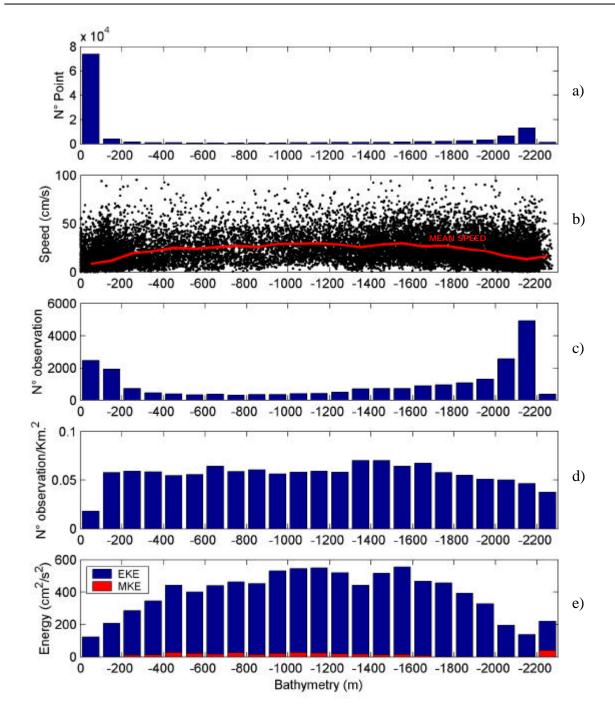



Figura 33. a) Distribuzione in quantità di punti della batimetria del Mar Nero con una risoluzione di 2'x 2', b) Distribuzione del modulo della velocità rispetto alla batimetria sottostante alla posizione del drifter e velocità media, c) numero di osservazioni sovrastanti a ciascuna batimetria, d) numero di osservazioni sovrastanti a ciascuna batimetria normalizzate rispetto alla superficie di sezione occupata da ogni isobata, e) Mean Kinetic Energy (MKE) e Eddy Kinetic Energy (EKE) mediate su traiettorie passanti sopra batimetrie, comprese tra 0 e 2300m, considerando intervalli di 100m.

A questo punto si è calcolata la distanza tipica di alcune profondità nelle regioni a ovest, tra 41.7 °N - 43.1 °N, a sud-ovest tra 32.1°E - 33.4 °E, a sud-est tra 35 °E - 37.7 °E ed infine a nord-est tra 43.2 °N - 44.4°N, per capire a quale distanza dalla costa è possibile comunemente individuare la Rim Current (figure 37, 38, 39, 40). Questa corrente si trova ad una distanza tipica dalla costa corrispondente alla porzione di fondale marino che coincide con la scarpata continentale. In alcune regioni questa fascia è più ampia, in particolare a sud-est, (circa 40 km di estensione) con due massimi, uno a 35 km, l'altro a 45 km circa dalla costa, e la si può individuare partendo da costa a circa 30 km (figura 38); questa è una zona dove la corrente è meno intensa. A nord-est invece, lungo la costa russa, si ha maggior variabilità rispetto alla costa turca, la Rim Current si denota a circa di 15 km da costa ed in una banda di circa 30 km di estensione (figura 37). A sud ovest, su una porzione di mare antistante la costa della Turchia, si individua già ad una distanza media di 10 km, con larghezza 20 km in cui distinguiamo due massimi, uno a 17 km e uno a 28 km (figura 39). A ovest, considerando l'area prospiciente alla costa bulgara, la fascia è ancor più evidente, di fatto, si passa piuttosto rapidamente da 10 a 40-50 cm/s a partire da 35-40 km circa da costa con una ampiezza di circa 40 km (figura 40).

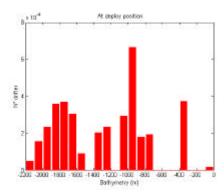


Figura 34. a) Distribuzione dei drifter rispetto alla profondità sottostante al punto di rilascio: a) senza normalizzazione, b) normalizzata rispetto alla superficie di bacino occupata da tale profondità.

ISTITUTO NAZIONALE di Oceanografia e di Geofisica Sperimentale Trieste

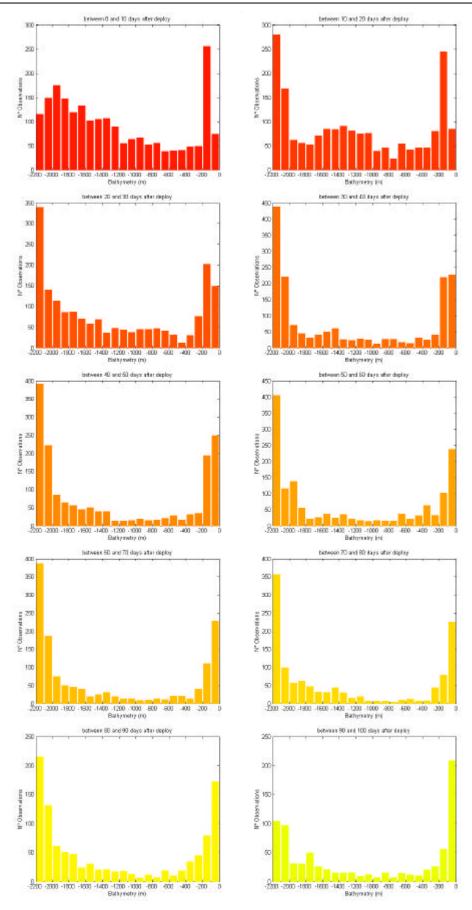


Figura 35. Evoluzione della distribuzione delle posizioni dei drifter rispetto alla batimetria a partire dal loro rilascio.

ISTITUTO NAZIONALE di Oceanografia e di Geofisica Sperimentale Trieste

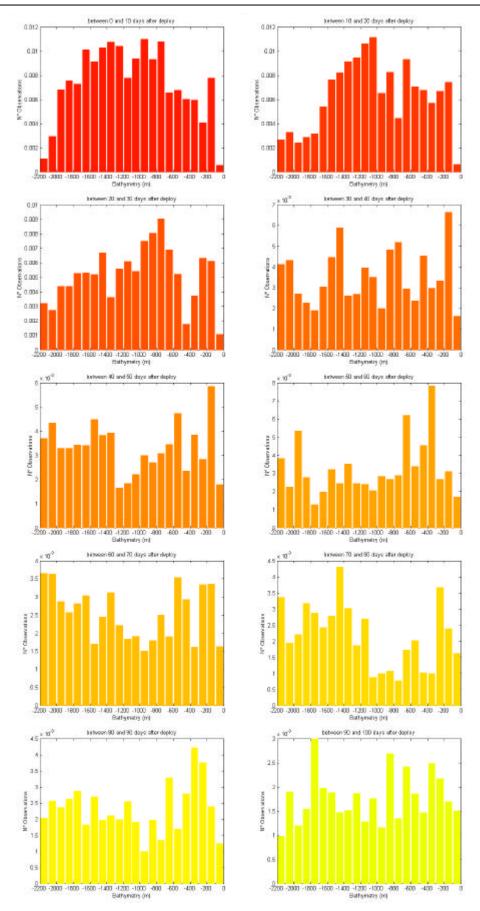
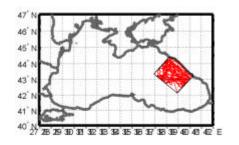



Figura 36. Evoluzione della distribuzione delle posizioni dei drifter rispetto alla batimetria a partire dal loro rilascio, normalizzando rispetto alla superficie di bacino occupata da ogni intervallo di batimetria.

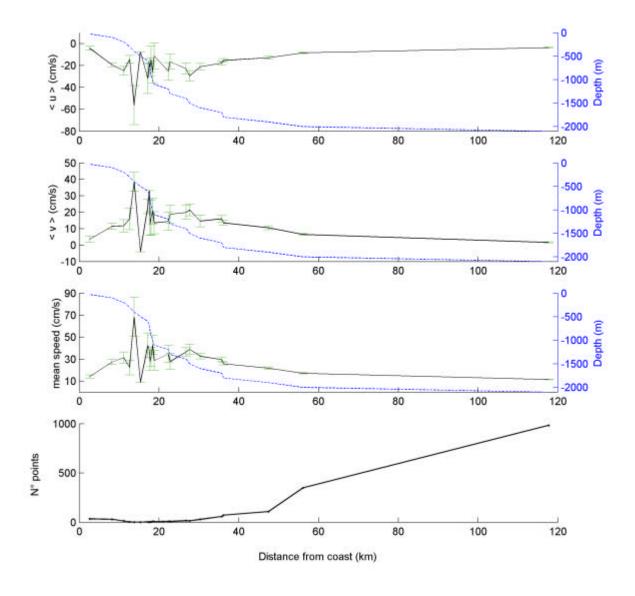
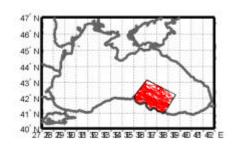



Figura 37. Modulo delle velocità medie e relative componenti, errore standard (verde), quantità di osservazioni rispetto alla distanza da costa ed andamento del fondale (blu). Le velocità e le distanze tipiche delle batimetrie sono state calcolate impiegando le traiettorie interne alla regione considerata (in rosso nella mappa).

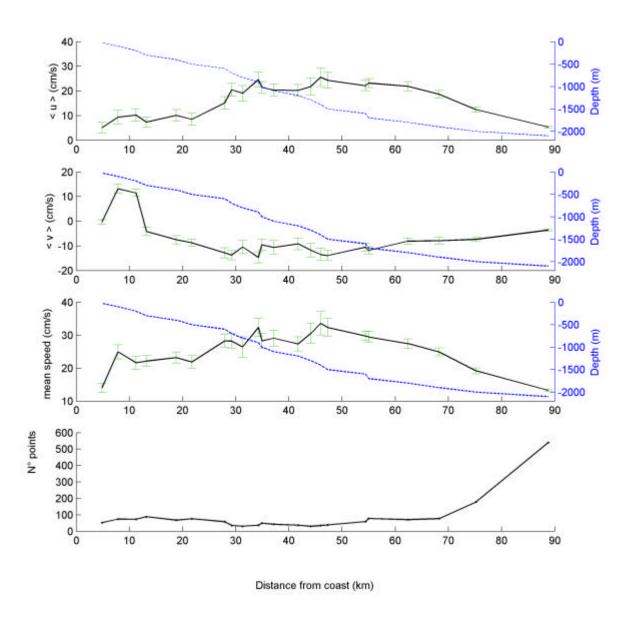
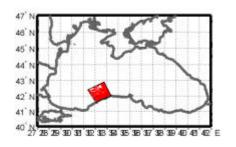



Figura 38. Come figura 37 ma per la regione lungo la costa turca (in rosso nella mappa).

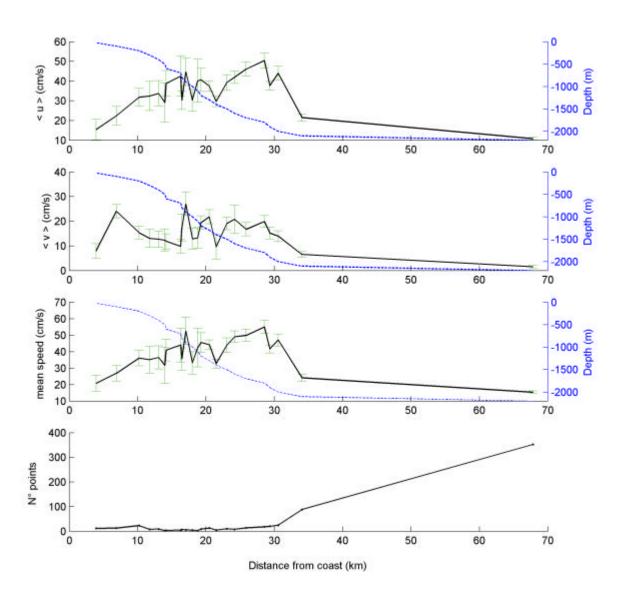
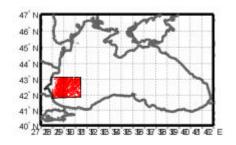



Figura 39. Come figura 37 ma per la regione lungo la costa turca a sud-ovest (in rosso nella mappa).

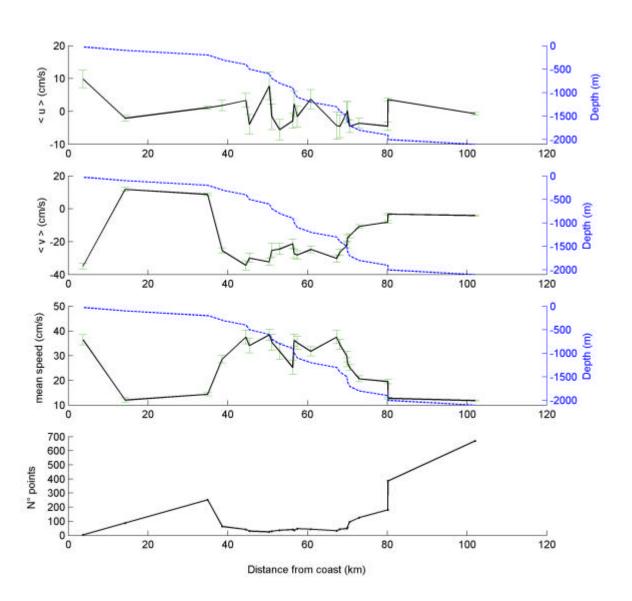


Figura 40. Come figura 37 ma per la regione lungo la costa bulgara (in rosso nella mappa).

4. Conclusioni

In questo nostro studio descriviamo le caratteristiche della circolazione superficiale nel Mar Nero, così come emerge dalle traiettorie descritte da 54 drifter rilasciati in un intervallo temporale di circa 5 anni, dal 28 settembre 1999 al 29 agosto 2003.

A livello "raw" (non ancora interpolati) i dati sono stati tagliati alla fine e all'inizio, quando necessario, ed individuata la causa di fine operatività del drifter. Si è registrata la data, ora, posizione geografica di inizio dei primi dati buoni e fine di operatività dei drifter ed i limiti di latitudine e longitudine di ciascuno. Successivamente dalle posizioni editate ed interpolate ogni 6 ore con il metodo di krigging mediante variogramma calcolato dai dati stessi, sono state calcolate le velocità con il procedimento delle differenze finite centrate. Prima di tutto si è fatta una analisi circa la copertura temporale delle traiettorie e calcolata la "mean half life", anche facendo una distinzione tra le tre tipologie di galleggianti impiegati. Poi abbiamo osservato la distribuzione spaziale, attraverso la mappatura delle traiettorie, creato mappe di segmenti per intervalli di velocità e distinto le traiettorie complessive per ognuno dei 5 anni. Successivamente si è definita la scala spaziale su cui mediare i dati, che ci è servita per calcolare le statistiche euleriane e ricavare mappe del campo medio di velocità, di ellissi di varianza, di energie cinetiche del campo di velocità media (MKE, EKE) e di tempo di residenza medio anche per stagioni. Queste statistiche sono anche state calcolate separando i dati per stagioni. Infine si è studiata la relazione tra batimetria e corrente e individuata per alcune zone la distanza tipica della Rim Current dalla costa.

I drifter hanno una "mean half life" di 92 giorni senza troppo evidenti differenze a seconda del modello, la "mean half life" più bassa paragonata agli XAN-3 (91 giorni) e agli SVP (95 giorni) è degli SVP-B con 84 giorni. La maggior quantità di dati si ha nell'anno 2002 nel quale sono presenti 25 drifter ed una buona copertura spaziale. Dall'analisi delle traiettorie si nota come i drifter seguano la Rim Current con andamento ciclonico attorno al perimetro del bacino con velocità media di circa 30 cm/s e velocità massima di 93.5 cm/s, poco a est dello stretto del Bosforo. I tempi di residenza medi, rispetto a dischi di raggio 25 km sono di 1-2 giorni con variabilità di 1-3 giorni. Questo anello ha una larghezza variabile da 20 km a 60 km e lo si può individuare, in media e rispetto a differenti zone, a partire da 15 km fino a circa 38 km dalla costa in ambiente di scarpata continentale come messo in risalto dallo studio della relazione tra batimetria e corrente. I drifter non tendono a seguire le isobate, in quanto circa 100 giorni dopo

ISTITUTO NAZIONALE di Oceanografia e di Geofisica Sperimentale Trieste

il loro rilascio si distribuiscono piuttosto equamente su tutta la batimetria del bacino, però si rileva un maggior energia per profondità comprese tra 400 e 1800 m.

Le traiettorie ed anche le mappe del campo medio mettono in luce i vortici Batumi e Sevastopol, con velocità anche maggiori di 40 cm/s ed altri vortici con velocità inferiori presenti, sia nelle zone tra la Rim Current e la costa, sia nelle zone interne dei due sotto-bacini. Le traiettorie mostrano altresì la presenza di diramazioni della Rim Current che, assieme ai vortici contribuiscono anche a deviare i drifter nelle zone interne dei due sottobacini, qui le velocità diminuiscono, fino a meno di 10 cm/s con tempi di residenza medi per cerchi di 25 km di raggio, di 5-6 giorni e un tempo massimo di quasi 23 giorni.

Globalmente l'energia cresce in inverno ed è massima in primavera; l'elevata energia in estate non è un risultato significativo perché stagione sotto campionata. Localmente la MKE è elevata lungo l'anello dominato dalla Rim Current, come si vede anche dalle mappe del campo medio di corrente, con valori più grandi in inverno e primavera lungo la costa turca (>1000 cm² s⁻²), mentre l'EKE è elevata di fronte a Sevastopol e nella zona più ad est del bacino visibile anche dai grafici d'ellissi di varianza, con valori massimi sempre in primavera 450-550 cm²s⁻². L'EKE è ancora dello stesso ordine di grandezza lungo la costa sud orientale, sia durante i mesi primaverili sia estivi. Nella zona di fronte a Sevastopol, in cui abbiamo dati sufficienti per tutte le stagioni, possiamo affermare che MKE ed EKE sono massime in primavera.

Ringraziamenti

Gli autori ringraziano quanti hanno contribuito a questo progetto nel Mar Nero in particolare: Elisabeth Horton, Peter Niiler, Sergey Motyzhev e Andrey Zatsepin. Inoltre un doveroso ringraziamento va a Laura Ursella per la realizzazione di programmi Matlab, per l'elaborazione dei dati ed il calcolo delle statistiche euleriane.

Referenze

- Afanasyev, Y. D., Kostianoy, A. G., Zatsepin, A. G. e Poulain, P. M. "Analysis of Velocity Field in the Eastern Black Sea from Satellite Data During the Black Sea '99 Experiment", *Journal of Geophysical Research*, 107.C8, 13/1-7, 2002.
- Eremeev, V. N., Ivanov, L. M., Kirwan, A. D, Jr., Melnichenko, O. V., Kochergin, S. V., e Stanichnaya. "Reconstruction of Oceanic Flow Charactyeristics From Quasi-Lagrangian Data 2. Characteristics of the Large-Scale Circulation in the Black Sea", *Journal of Geophysical Research*, 97.C6, 9743-9753, 1992.
- Emery, W. J. e Thomson, R. E, "Data Analysis Methods in Physical Oceanography", edited by-Elsevier Science B.V., 319-328, Amsterdam, The Netherlands 2001.
- Davis, R. E., "Observing the General Circulation with Floats", *Deep-Sea Research* 38.Suppl. 1, 531-571, 1991.
- Hansen, D. V., e Poulain, P. M., "Quality Control and Interpolations of WOCE-TOGA Drifter Data", *Journal of Atmospheric and Ocean Technology*, 13.4,900-909, 1996.
- Korotaev, G., Oguz, T., Nikiforov, A., e Koblinsky, C. "Seasonal, Interannual, and Mesoscale Variability of the Black Sea Upper Layer Circulation Derived from Altimeter Data", *Journal of Geophysical Research*, 108.C4, 19,1-19,15, 2003.
- Motyzhev, S.V., Poulain, P. M., Zatsepin, A. G., Fayos, C., Kostianoy, A. G., Maximenko, N. A., Poyarkov, S. G., Soloviev, D. M., e Stanichny, S. V. "New Phase of Drifter Experiment in the Black Sea", In Global Drifting Buoy Observation-2000: A DBCP Implementation Strategy, DBCP Tech. Doc., Ser. 16, World Meteorol. Org., Geneva 2000.
- Oguz, T. V., Latun, V.S., Latif, M. A., Vladimirov, V. V., Sur, H. I. Markov A. A., Ozsoy, E., Kotovshchikov, V. V., Eremeev, V. V., e Unluata U., "Circulation in the surface and intermediate layer of the Black Sea", *Deep-Sea Research*, part I, 40, 1597-1612, 1993.

- Poulain, P. M. "Adriatic Sea Surface Circulation as Derived from Drifter Data Between1990 and 1999", *Journal of Marine Systems* 29, 3-32, 2001.
- Poulain, P. M., e Varnas, A.W., e Niiler, P. P.. "Near-Surface Circulation of the Nordic Seas as Measured by Lagrangian Drifters", *Journal of Geophysical Research*, 101.C8, 18,237-18,258, 1996.
- Sybrandy, A.L., Niiler, "WOCE/TOGA Lagrangian Drifter Construction Manual", Scripps Inst. Of Oceanogr., Univ. of Calif., San Diego, La Jolla, Calif., 1991.
- Zhurbas, V. M., Zatsepin, A. G., e Poulain, P.-M. "Statistical Analysis of Current's Velocity in the Black Sea Based on Drifter Data", In *Multidisciplinary Investigations of the North-East Part of the Black Sea (in Russian)*, edited by- Zatsepin, A.G., e Flint, M.V., 105-118, Nauka, Moscow, 2002.
- Zatsepin, A G., Ginzburg, A. I., Kostianoy, A. G., Kremenetskiy, V., Krivosheya, V.G., Stanichny, S. V., e Poulain, P. M. "Observations of Black Sea Mesoscale Eddies and Associated Horizontal Mixing", *Journal of Geophysical Research* 108.C8 2/1-2/27, 2003.